Fasano A, Mancini A, Primicerio M
Dipartimento di Matematica e Informatica U.Dini, Firenze, Italy; IASI-CNR, Roma, Italy; R&D Department FIAB, Firenze, Italy.
Dipartimento di Matematica e Informatica U.Dini, Firenze, Italy.
Math Biosci. 2016 Feb;272:76-80. doi: 10.1016/j.mbs.2015.12.003. Epub 2015 Dec 21.
The role of cancer stem cells (CSC) in tumour growth has received increasing attention in the recent literature. Here we stem from an integro-differential system describing the evolution of a population of CSC and of ordinary (non-stem) tumour cells formulated and studied in a previous paper, and we investigate an approximation in which the system reduces to a pair of nonlinear coupled parabolic equation. We prove that the new system is well posed and we examine some general properties. Numerical simulations show more on the qualitative behaviour of the solutions, concerning in particular the so-called tumour paradox, according to which an increase of the mortality rate of ordinary (non-stem) tumour cells results asymptotically in a faster growth.
癌症干细胞(CSC)在肿瘤生长中的作用在最近的文献中受到了越来越多的关注。在此,我们从一个积分 - 微分系统出发,该系统描述了一组癌症干细胞和普通(非干细胞)肿瘤细胞群体的演化,此系统在之前的一篇论文中已有阐述和研究。我们研究一种近似情况,在这种近似下,该系统简化为一对非线性耦合抛物方程。我们证明了新系统是适定的,并研究了一些一般性质。数值模拟更详细地展示了解的定性行为,特别是关于所谓的肿瘤悖论,即普通(非干细胞)肿瘤细胞死亡率的增加最终会导致肿瘤生长加快。