ADDB, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; Institute of Condensed Matter and Nanosciences, Bio- and Soft- Matter, Université catholique de Louvain, Louvain-la-Neuve, Belgium; CRIBIO (Center for Research and Engineering on Biomaterials), Brussels, Belgium.
Bonn-Rhein-Sieg University of Applied Sciences, Department of Natural Sciences, von Liebig Str. 20, D-53359 Rheinbach, Germany.
Dent Mater. 2016 Feb;32(2):136-48. doi: 10.1016/j.dental.2015.11.032. Epub 2015 Dec 21.
The use of a Type I photoinitiator (monoacylphosphine oxide, MAPO) was described as advantageous in a model formulation, as compared to the conventional Type II photoinitiator (Camphorquinone, CQ). The aim of the present work was to study the kinetics of polymerization of various composite mixtures (20-40-60-80 mol%) of bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (BisGMA/TegDMA) containing either CQ or MAPO, based on real-time measurements and on the characterization of various post-cure characteristics.
Polymerization kinetics were monitored by Fourier-transform near-infrared spectroscopy (FT-NIRS) and dielectric analysis (DEA). A range of postcure properties was also investigated.
FT-NIRS and DEA proved complementary to follow the fast kinetics observed with both systems. Autodecceleration occurred after ≈1 s irradiation for MAPO-composites and ≈5-10 s for CQ-composites. Conversion decreased with increasing initial viscosity for both photoinitiating systems. However despite shorter light exposure (3s for MAPO vs 20s for CQ-composites), MAPO-composites yielded higher conversions for all co-monomer mixtures, except at 20 mol% BisGMA, the less viscous material. MAPO systems were associated with increased amounts of trapped free radicals, improved flexural strength and modulus, and reduced free monomer release for all co-monomer ratios, except at 20 mol% BisGMA.
This work confirms the major influence of the initiation system both on the conversion and network cross-linking of highly-filled composites, and further highlights the advantages of using MAPO photoinitiating systems in highly-filled dimethacrylate-based composites provided that sufficient BisGMA content (>40 mol%) and adapted light spectrum are used.
与传统的 II 型光引发剂(樟脑醌,CQ)相比,在模型配方中使用 I 型光引发剂(单酰基膦氧化物,MAPO)被描述为有利。本工作的目的是研究含有 CQ 或 MAPO 的各种复合混合物(20-40-60-80mol%)的BisGMA/TriEGDMA 的聚合动力学,基于实时测量和对各种后固化特性的表征。
聚合动力学通过傅里叶变换近红外光谱(FT-NIRS)和介电分析(DEA)进行监测。还研究了一系列后固化性能。
FT-NIRS 和 DEA 被证明可互补,以跟踪两种体系观察到的快速动力学。自减速在 MAPO 复合材料中照射约 1s 后发生,在 CQ 复合材料中照射约 5-10s 后发生。对于两种光引发体系,转化率随初始粘度的增加而降低。然而,尽管暴露时间较短(MAPO 为 3s,CQ 复合材料为 20s),MAPO 复合材料在所有共单体混合物中都产生了更高的转化率,除了在 20mol% BisGMA 处,该材料的粘度较低。MAPO 体系与更多的捕获自由基、提高的弯曲强度和模量以及减少的游离单体释放有关,除了在 20mol% BisGMA 处。
这项工作证实了引发体系对高填充复合材料的转化率和网络交联的重要影响,进一步强调了在高填充二甲基丙烯酸酯基复合材料中使用 MAPO 引发体系的优势,前提是使用足够的 BisGMA 含量(>40mol%)和适当的光光谱。