Suppr超能文献

具有纳米结构电极的可充电镍铁电池的性能增强和副反应。

Performance Enhancement and Side Reactions in Rechargeable Nickel-Iron Batteries with Nanostructured Electrodes.

机构信息

School of Materials Science and Engineering, Hunan University , Changsha 410082, P. R. China.

Andlinger Center for Energy and the Environment, Department of Mechanical and Aerospace Engineering, Princeton University , Princeton, New Jersey 08544, United States.

出版信息

ACS Appl Mater Interfaces. 2016 Jan 27;8(3):2088-96. doi: 10.1021/acsami.5b10547. Epub 2016 Jan 14.

Abstract

We report for the first time a solution-based synthesis of strongly coupled nanoFe/multiwalled carbon nanotube (MWCNT) and nanoNiO/MWCNT nanocomposite materials for use as anodes and cathodes in rechargeable alkaline Ni-Fe batteries. The produced aqueous batteries demonstrate very high discharge capacities (800 mAh gFe(-1) at 200 mA g(-1) current density), which exceed that of commercial Ni-Fe cells by nearly 1 order of magnitude at comparable current densities. These cells also showed the lack of any "activation", typical in commercial batteries, where low initial capacity slowly increases during the initial 20-50 cycles. The use of a highly conductive MWCNT network allows for high-capacity utilization because of rapid and efficient electron transport to active metal nanoparticles in oxidized [such as Fe(OH)2 or Fe3O4] states. The flexible nature of MWCNTs accommodates significant volume changes taking place during phase transformation accompanying reduction-oxidation reactions in metal electrodes. At the same time, we report and discuss that high surface areas of active nanoparticles lead to multiple side reactions. Dissolution of Fe anodes leads to reprecipitation of significantly larger anode particles. Dissolution of Ni cathodes leads to precipitation of Ni metal on the anode, thus blocking transport of OH(-) anions. The electrolyte molarity and composition have a significant impact on the capacity utilization and cycling stability.

摘要

我们首次报道了一种基于溶液的合成方法,用于制备强耦合纳米 Fe/多壁碳纳米管 (MWCNT) 和纳米 NiO/MWCNT 纳米复合材料,用作可充碱性 Ni-Fe 电池的阳极和阴极。所制备的水系电池表现出非常高的放电容量(在 200 mA g(-1) 电流密度下为 800 mAh gFe(-1)),在可比电流密度下,比商业 Ni-Fe 电池高近一个数量级。这些电池也显示出缺乏任何“激活”,这在商业电池中很常见,在初始 20-50 个循环中,低初始容量会缓慢增加。由于氧化态 [如 Fe(OH)2 或 Fe3O4] 中活性金属纳米颗粒的快速高效电子传递,高导电性 MWCNT 网络的使用允许实现高容量利用率。MWCNTs 的柔性性质可适应金属电极的还原-氧化反应伴随的相变过程中的显著体积变化。同时,我们报告并讨论了高表面积的活性纳米颗粒会导致多种副反应。Fe 阳极的溶解会导致阳极颗粒显著增大的再沉淀。Ni 阴极的溶解会导致 Ni 金属在阳极上沉淀,从而阻碍 OH(-) 阴离子的传输。电解质的摩尔浓度和组成对容量利用率和循环稳定性有重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验