Ande Chaitanya Krishna, Knoops Harm C M, de Peuter Koen, van Drunen Maarten, Elliott Simon D, Kessels Wilhelmus M M
Department of Applied Physics, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands.
Oxford Instruments Plasma Technology , North End, Bristol BS49 4AP, United Kingdom.
J Phys Chem Lett. 2015 Sep 17;6(18):3610-4. doi: 10.1021/acs.jpclett.5b01596. Epub 2015 Sep 2.
There is an urgent need to deposit uniform, high-quality, conformal SiN(x) thin films at a low-temperature. Conforming to these constraints, we recently developed a plasma enhanced atomic layer deposition (ALD) process with bis(tertiary-butyl-amino)silane (BTBAS) as the silicon precursor. However, deposition of high quality SiNx thin films at reasonable growth rates occurs only when N2 plasma is used as the coreactant; strongly reduced growth rates are observed when other coreactants like NH3 plasma, or N2-H2 plasma are used. Experiments reported in this Letter reveal that NH(x)- or H- containing plasmas suppress film deposition by terminating reactive surface sites with H and NH(x) groups and inhibiting precursor adsorption. To understand the role of these surface groups on precursor adsorption, we carried out first-principles calculations of precursor adsorption on the β-Si3N4(0001) surface with different surface terminations. They show that adsorption of the precursor is strong on surfaces with undercoordinated surface sites. In contrast, on surfaces with H, NH2 groups, or both, steric hindrance leads to weak precursor adsorption. Experimental and first-principles results together show that using an N2 plasma to generate reactive undercoordinated surface sites allows strong adsorption of the silicon precursor and, hence, is key to successful deposition of silicon nitride by ALD.
迫切需要在低温下沉积均匀、高质量、保形的SiN(x)薄膜。为满足这些要求,我们最近开发了一种以双(叔丁基氨基)硅烷(BTBAS)作为硅前驱体的等离子体增强原子层沉积(ALD)工艺。然而,只有当使用N2等离子体作为共反应物时,才能以合理的生长速率沉积高质量的SiNx薄膜;当使用其他共反应物如NH3等离子体或N2-H2等离子体时,生长速率会大幅降低。本信函中报道的实验表明,含NH(x)或H的等离子体会通过用H和NH(x)基团终止反应性表面位点并抑制前驱体吸附来抑制薄膜沉积。为了解这些表面基团在前驱体吸附中的作用,我们对具有不同表面终止的β-Si3N4(0001)表面上的前驱体吸附进行了第一性原理计算。结果表明,前驱体在具有配位不足表面位点的表面上吸附较强。相反,在具有H、NH2基团或两者都有的表面上,空间位阻导致前驱体吸附较弱。实验和第一性原理结果共同表明,使用N2等离子体产生反应性配位不足的表面位点能够使硅前驱体强烈吸附,因此,这是通过ALD成功沉积氮化硅的关键。