Suppr超能文献

以TiO包覆的磁铁矿纳米颗粒为例,配体诱导还原与原子层沉积包覆协同作用。

Ligand-induced reduction concerted with coating by atomic layer deposition on the example of TiO-coated magnetite nanoparticles.

作者信息

García-García Sarai, López-Ortega Alberto, Zheng Yongping, Nie Yifan, Cho Kyeongjae, Chuvilin Andrey, Knez Mato

机构信息

CIC nanoGUNE , Tolosa Hiribidea 76 , 20018 Donostia-San Sebastián , Spain . Email:

Department of Materials Science and Engineering , University of Texas at Dallas , Richardson , Texas 75080 , USA.

出版信息

Chem Sci. 2018 Dec 17;10(7):2171-2178. doi: 10.1039/c8sc04474k. eCollection 2019 Feb 21.

Abstract

Atomic layer deposition is a chemical deposition technology that provides ultimate control over the conformality of films and their thickness, even down to Ångström-scale precision. Based on the marked superficial character and gas phase process of the technique, metal sources and their ligands shall ideally be highly volatile. However, in numerous cases those ligands corrode the substrate or compete for adsorption sites, well-known as side reactions of these processes. Therefore, the ability to control such side reactions might be of great interest, since it could achieve synchronous coating and alteration of a substrate in one process, saving time and energy otherwise needed for a post-treatment of the sample. Consequently, advances in this way must require understanding and control of the chemical processes that occur during the coating. In this work, we show how choosing an appropriate ligand of the metal source can unveil a novel approach to concertedly coat and reduce γ-FeO nanoparticles to form a final product composed of FeO/TiO core/shell nanoparticles. To this aim, we envisage that appropriate design of precursors and selection of substrates will pave the way for numerous new compositions, while the ALD process itself allows for easy upscaling to large amounts of coated and reduced particles for industrial use.

摘要

原子层沉积是一种化学沉积技术,它能够对薄膜的保形性及其厚度实现极致控制,甚至达到埃级精度。基于该技术显著的表面特性和气相过程,金属源及其配体理想情况下应具有高挥发性。然而,在许多情况下,这些配体会腐蚀基底或竞争吸附位点,这是这些过程中众所周知的副反应。因此,控制此类副反应的能力可能会备受关注,因为这可以在一个过程中实现基底的同步涂层和改性,节省样品后处理所需的时间和能量。因此,以这种方式取得进展必须要理解和控制涂层过程中发生的化学过程。在这项工作中,我们展示了如何通过选择金属源的合适配体,揭示一种协同包覆并将γ-FeO纳米颗粒还原以形成由FeO/TiO核壳纳米颗粒组成的最终产物的新方法。为此,我们设想前驱体的合理设计和基底的选择将为众多新的组合物铺平道路,而原子层沉积过程本身便于扩大规模以制备大量用于工业用途的包覆和还原颗粒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/557f/6385483/1a0e69d1a4dc/c8sc04474k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验