Meng Lingyi, Yam ChiYung, Zhang Yu, Wang Rulin, Chen GuanHua
Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University , Xiamen 361005, P. R. China.
Beijing Computational Science Research Center , Beijing 100094, P. R. China.
J Phys Chem Lett. 2015 Nov 5;6(21):4410-6. doi: 10.1021/acs.jpclett.5b01913. Epub 2015 Oct 26.
The unique optical properties of nanometallic structures can be exploited to confine light at subwavelength scales. This excellent light trapping is critical to improve light absorption efficiency in nanoscale photovoltaic devices. Here, we apply a multiscale quantum mechanics/electromagnetics (QM/EM) method to model the current-voltage characteristics and optical properties of plasmonic nanowire-based solar cells. The QM/EM method features a combination of first-principles quantum mechanical treatment of the photoactive component and classical description of electromagnetic environment. The coupled optical-electrical QM/EM simulations demonstrate a dramatic enhancement for power conversion efficiency of nanowire solar cells due to the surface plasmon effect of nanometallic structures. The improvement is attributed to the enhanced scattering of light into the photoactive layer. We further investigate the optimal configuration of the nanostructured solar cell. Our QM/EM simulation result demonstrates that a further increase of internal quantum efficiency can be achieved by scattering light into the n-doped region of the device.
纳米金属结构独特的光学特性可用于在亚波长尺度上限制光。这种出色的光捕获对于提高纳米级光伏器件的光吸收效率至关重要。在此,我们应用多尺度量子力学/电磁学(QM/EM)方法来模拟基于等离子体纳米线的太阳能电池的电流-电压特性和光学特性。QM/EM方法的特点是对光活性成分进行第一性原理量子力学处理,并对电磁环境进行经典描述。耦合的光电QM/EM模拟表明,由于纳米金属结构的表面等离子体效应,纳米线太阳能电池的功率转换效率有显著提高。这种提高归因于光向光活性层的散射增强。我们进一步研究了纳米结构太阳能电池的最佳配置。我们的QM/EM模拟结果表明,通过将光散射到器件的n掺杂区域,可以进一步提高内部量子效率。