Suppr超能文献

烯烃-吡虫啉的结构及其质子化形式的气相裂解化学

Structure of olefin-imidacloprid and gas-phase fragmentation chemistry of its protonated form.

作者信息

Fusetto Roberto, White Jonathan M, Hutton Craig A, O'Hair Richard A J

机构信息

School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, University of Melbourne, Melbourne, Victoria 3010, Australia.

出版信息

Org Biomol Chem. 2016 Feb 7;14(5):1715-26. doi: 10.1039/c5ob02371h.

Abstract

One of the major insect metabolites of the widely used neonicotinoid insecticide imidacloprid, 1 (1-[(6-chloro-3-pyridinyl)methyl]-N-nitro-1H-imidazol-2-amine), is the olefin 2. To better understand how the structure of olefin 2 relates to the gas-phase fragmentation of its protonated form, 2H(+), X-ray crystallography, tandem mass spectrometry experiments and DFT calculations were carried out. Olefin 2 was found to be in a tautomeric form where the proton is on the N(1) position of the imidazole ring and forms a hydrogen bond to one of the oxygen atoms of the coplanar nitroamine group. Under conditions of low-energy collision-induced dissociation (CID) in a linear ion trap, 2H(+), formed via electrospray ionization (ESI), fragments via a major loss of water, together with minor competing losses of HNO2 and NO2•.This contrasts with 1H+, which mainly undergoes bond homolysis via NO2• loss. Thus, installation of the double bond in 2 plays a key role in facilitating the loss of water. DFT calculations, carried out using the B3LYP/6-311G++(d,p) level of theory, revealed that loss of water was energetically more favourable compared to HNO2 and NO2• loss. Three multistep, energetically accessible mechanisms were identified for loss of water from 2H(+), and these have the following barriers: (I) direct proton transfer from N(5) of the pyridine to O(1) on the NO2 group (119 kJ mol(-1)); (II) rotation of the N(2)-N(4) bond (117 kJ mol(-1)); (III) 1,3-intramolecular proton transfer between the two oxygen atoms of the NO2 group (145 kJ mol(-1)). Given that the lowest barrier for the losses of HNO2 and NO2• is 156 kJ mol(-1), it is likely that all three water loss mechanisms occur concurrently.

摘要

广泛使用的新烟碱类杀虫剂吡虫啉的主要昆虫代谢产物之一1(1-[(6-氯-3-吡啶基)甲基]-N-硝基-1H-咪唑-2-胺)是烯烃2。为了更好地理解烯烃2的结构与其质子化形式2H(+)的气相碎片化之间的关系,进行了X射线晶体学、串联质谱实验和密度泛函理论(DFT)计算。发现烯烃2处于互变异构形式,质子位于咪唑环的N(1)位置,并与共面硝胺基团的一个氧原子形成氢键。在线性离子阱中低能量碰撞诱导解离(CID)条件下,通过电喷雾电离(ESI)形成的2H(+)主要通过失水碎片化,同时伴有少量竞争性的HNO2和NO2•损失。这与1H+形成对比,1H+主要通过NO2•损失发生键均裂。因此,在2中引入双键在促进失水方面起关键作用。使用B3LYP/6-311G++(d,p)理论水平进行的DFT计算表明,与HNO2和NO2•损失相比,失水在能量上更有利。确定了从2H(+)失水的三种多步、能量上可行的机制,其具有以下能垒:(I)吡啶的N(5)上的质子直接转移至NO2基团上的O(1)(119 kJ mol(-1));(II)N(2)-N(4)键的旋转(117 kJ mol(-1));(III)NO2基团的两个氧原子之间的1,3-分子内质子转移(145 kJ mol(-1))。鉴于HNO2和NO2•损失的最低能垒为156 kJ mol(-1),所有三种失水机制可能同时发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验