Suppr超能文献

一种用于检测人类基因组中CpG岛的混合方法。

A Hybrid Approach for CpG Island Detection in the Human Genome.

作者信息

Yang Cheng-Hong, Lin Yu-Da, Chiang Yi-Cheng, Chuang Li-Yeh

机构信息

Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan.

Department of Chemical Engineering & Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan.

出版信息

PLoS One. 2016 Jan 4;11(1):e0144748. doi: 10.1371/journal.pone.0144748. eCollection 2016.

Abstract

BACKGROUND

CpG islands have been demonstrated to influence local chromatin structures and simplify the regulation of gene activity. However, the accurate and rapid determination of CpG islands for whole DNA sequences remains experimentally and computationally challenging.

METHODOLOGY/PRINCIPAL FINDINGS: A novel procedure is proposed to detect CpG islands by combining clustering technology with the sliding-window method (PSO-based). Clustering technology is used to detect the locations of all possible CpG islands and process the data, thus effectively obviating the need for the extensive and unnecessary processing of DNA fragments, and thus improving the efficiency of sliding-window based particle swarm optimization (PSO) search. This proposed approach, named ClusterPSO, provides versatile and highly-sensitive detection of CpG islands in the human genome. In addition, the detection efficiency of ClusterPSO is compared with eight CpG island detection methods in the human genome. Comparison of the detection efficiency for the CpG islands in human genome, including sensitivity, specificity, accuracy, performance coefficient (PC), and correlation coefficient (CC), ClusterPSO revealed superior detection ability among all of the test methods. Moreover, the combination of clustering technology and PSO method can successfully overcome their respective drawbacks while maintaining their advantages. Thus, clustering technology could be hybridized with the optimization algorithm method to optimize CpG island detection.

CONCLUSION/SIGNIFICANCE: The prediction accuracy of ClusterPSO was quite high, indicating the combination of CpGcluster and PSO has several advantages over CpGcluster and PSO alone. In addition, ClusterPSO significantly reduced implementation time.

摘要

背景

CpG岛已被证明会影响局部染色质结构并简化基因活性的调控。然而,对于全基因组DNA序列准确且快速地确定CpG岛在实验和计算方面仍具有挑战性。

方法/主要发现:提出了一种通过将聚类技术与(基于粒子群优化算法的)滑动窗口方法相结合来检测CpG岛的新程序。聚类技术用于检测所有可能的CpG岛的位置并处理数据,从而有效地避免了对DNA片段进行广泛且不必要的处理,进而提高了基于滑动窗口的粒子群优化(PSO)搜索的效率。这种提出的方法名为ClusterPSO,可对人类基因组中的CpG岛进行通用且高度灵敏的检测。此外,还将ClusterPSO的检测效率与人类基因组中的八种CpG岛检测方法进行了比较。通过对人类基因组中CpG岛检测效率的比较,包括灵敏度、特异性、准确性、性能系数(PC)和相关系数(CC),ClusterPSO在所有测试方法中显示出卓越的检测能力。而且,聚类技术和PSO方法的结合能够在保持各自优点的同时成功克服它们各自的缺点。因此,聚类技术可以与优化算法方法相结合以优化CpG岛检测。

结论/意义:ClusterPSO的预测准确性相当高,表明CpGcluster和PSO的结合比单独的CpGcluster和PSO具有多个优势。此外,ClusterPSO显著缩短了实施时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1774/4705099/c4292110b1d1/pone.0144748.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验