Schikora-Tamarit Miquel Àngel, Toscano-Ochoa Carlos, Domingo Espinós Júlia, Espinar Lorena, Carey Lucas B
Experimental and Health Sciences, Universitat Pompeu Fabra, 88 Dr. Aiguader, UPF, PRBB, 3rd floor reception, Barcelona, Barcelona, Spain.
Integr Biol (Camb). 2016 Apr 18;8(4):546-55. doi: 10.1039/c5ib00230c. Epub 2016 Jan 5.
Autoregulatory feedback loops occur in the regulation of molecules ranging from ATP to MAP kinases to zinc. Negative feedback loops can increase a system's robustness, while positive feedback loops can mediate transitions between cell states. Recent genome-wide experimental and computational studies predict hundreds of novel feedback loops. However, not all physical interactions are regulatory, and many experimental methods cannot detect self-interactions. Our understanding of regulatory feedback loops is therefore hampered by the lack of high-throughput methods to experimentally quantify the presence, strength and temporal dynamics of autoregulatory feedback loops. Here we present a mathematical and experimental framework for high-throughput quantification of feedback regulation and apply it to RNA binding proteins (RBPs) in yeast. Our method is able to determine the existence of both direct and indirect positive and negative feedback loops, and to quantify the strength of these loops. We experimentally validate our model using two RBPs which lack native feedback loops and by the introduction of synthetic feedback loops. We find that RBP Puf3 does not natively participate in any direct or indirect feedback regulation, but that replacing the native 3'UTR with that of COX17 generates an auto-regulatory negative feedback loop which reduces gene expression noise. Likewise, RBP Pub1 does not natively participate in any feedback loops, but a synthetic positive feedback loop involving Pub1 results in increased expression noise. Our results demonstrate a synthetic experimental system for quantifying the existence and strength of feedback loops using a combination of high-throughput experiments and mathematical modeling. This system will be of great use in measuring auto-regulatory feedback by RNA binding proteins, a regulatory motif that is difficult to quantify using existing high-throughput methods.
从三磷酸腺苷(ATP)到丝裂原活化蛋白激酶(MAP激酶)再到锌等分子的调节过程中都会出现自动调节反馈回路。负反馈回路可以增强系统的稳健性,而正反馈回路则可以介导细胞状态之间的转变。最近的全基因组实验和计算研究预测了数百个新的反馈回路。然而,并非所有的物理相互作用都是调节性的,而且许多实验方法无法检测到自我相互作用。因此,由于缺乏高通量方法来实验性地量化自动调节反馈回路的存在、强度和时间动态,我们对调节反馈回路的理解受到了阻碍。在这里,我们提出了一个用于高通量量化反馈调节的数学和实验框架,并将其应用于酵母中的RNA结合蛋白(RBP)。我们的方法能够确定直接和间接的正、负反馈回路的存在,并量化这些回路的强度。我们使用两个缺乏天然反馈回路的RBP并通过引入合成反馈回路来对我们的模型进行实验验证。我们发现RBP Puf3本身不参与任何直接或间接的反馈调节,但用COX17的天然3'非翻译区(3'UTR)取代其天然3'UTR会产生一个自动调节负反馈回路,从而降低基因表达噪声。同样,RBP Pub1本身也不参与任何反馈回路,但一个涉及Pub1的合成正反馈回路会导致表达噪声增加。我们的结果展示了一个综合实验系统,该系统结合高通量实验和数学建模来量化反馈回路的存在和强度。这个系统在测量RNA结合蛋白的自动调节反馈方面将非常有用,而RNA结合蛋白的这种调节基序很难用现有的高通量方法进行量化。