Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 03755, USA.
MIT Lincoln Laboratory, Massachusetts, 02421, USA.
Sci Rep. 2017 Oct 2;7(1):12511. doi: 10.1038/s41598-017-12655-2.
We describe an electrochemical measurement technique that enables bioelectronic measurements of reporter proteins in living cells as an alternative to traditional optical fluorescence. Using electronically programmable microfluidics, the measurement is in turn used to control the concentration of an inducer input that regulates production of the protein from a genetic promoter. The resulting bioelectronic and microfluidic negative-feedback loop then serves to regulate the concentration of the protein in the cell. We show measurements wherein a user-programmable set-point precisely alters the protein concentration in the cell with feedback-loop parameters affecting the dynamics of the closed-loop response in a predictable fashion. Our work does not require expensive optical fluorescence measurement techniques that are prone to toxicity in chronic settings, sophisticated time-lapse microscopy, or bulky/expensive chemo-stat instrumentation for dynamic measurement and control of biomolecules in cells. Therefore, it may be useful in creating a: cheap, portable, chronic, dynamic, and precise all-electronic alternative for measurement and control of molecules in living cells.
我们描述了一种电化学测量技术,可作为传统光学荧光的替代方法,用于活体细胞中报告蛋白的生物电子测量。使用电子可编程微流控技术,该测量方法又可用于控制诱导物输入的浓度,从而调节从遗传启动子产生的蛋白。由此产生的生物电子和微流控负反馈回路随后用于调节细胞中蛋白的浓度。我们展示了一些测量结果,其中用户可编程设定点通过反馈回路参数以可预测的方式精确改变细胞中的蛋白浓度,而这些参数影响闭环响应的动态。我们的工作不需要昂贵的光学荧光测量技术,因为这些技术在慢性环境中容易产生毒性,也不需要复杂的延时显微镜或庞大/昂贵的化学计量仪器来动态测量和控制细胞中的生物分子。因此,它可能有助于创建一种廉价、便携、慢性、动态和精确的全电子替代方案,用于测量和控制活细胞中的分子。