Suppr超能文献

KCC2可挽救雷特综合征患者来源的人类神经元的功能缺陷。

KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome.

作者信息

Tang Xin, Kim Julie, Zhou Li, Wengert Eric, Zhang Lei, Wu Zheng, Carromeu Cassiano, Muotri Alysson R, Marchetto Maria C N, Gage Fred H, Chen Gong

机构信息

Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802;

Bucknell University, Lewisburg, PA 17837;

出版信息

Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):751-6. doi: 10.1073/pnas.1524013113. Epub 2016 Jan 5.

Abstract

Rett syndrome is a severe form of autism spectrum disorder, mainly caused by mutations of a single gene methyl CpG binding protein 2 (MeCP2) on the X chromosome. Patients with Rett syndrome exhibit a period of normal development followed by regression of brain function and the emergence of autistic behaviors. However, the mechanism behind the delayed onset of symptoms is largely unknown. Here we demonstrate that neuron-specific K(+)-Cl(-) cotransporter2 (KCC2) is a critical downstream gene target of MeCP2. We found that human neurons differentiated from induced pluripotent stem cells from patients with Rett syndrome showed a significant deficit in KCC2 expression and consequently a delayed GABA functional switch from excitation to inhibition. Interestingly, overexpression of KCC2 in MeCP2-deficient neurons rescued GABA functional deficits, suggesting an important role of KCC2 in Rett syndrome. We further identified that RE1-silencing transcriptional factor, REST, a neuronal gene repressor, mediates the MeCP2 regulation of KCC2. Because KCC2 is a slow onset molecule with expression level reaching maximum later in development, the functional deficit of KCC2 may offer an explanation for the delayed onset of Rett symptoms. Our studies suggest that restoring KCC2 function in Rett neurons may lead to a potential treatment for Rett syndrome.

摘要

瑞特综合征是一种严重的自闭症谱系障碍,主要由X染色体上的单个基因甲基CpG结合蛋白2(MeCP2)突变引起。瑞特综合征患者在经历一段正常发育时期后,会出现脑功能衰退和自闭症行为。然而,症状延迟出现背后的机制在很大程度上尚不清楚。在此,我们证明神经元特异性钾氯共转运体2(KCC2)是MeCP2的关键下游基因靶点。我们发现,从瑞特综合征患者的诱导多能干细胞分化而来的人类神经元,其KCC2表达存在显著缺陷,因此γ-氨基丁酸(GABA)从兴奋到抑制的功能转换延迟。有趣的是,在缺乏MeCP2的神经元中过表达KCC2可挽救GABA功能缺陷,这表明KCC2在瑞特综合征中具有重要作用。我们进一步确定,神经元基因抑制因子RE1沉默转录因子(REST)介导MeCP2对KCC2的调控。由于KCC2是一种起效缓慢的分子,其表达水平在发育后期才达到最高,KCC2的功能缺陷可能为瑞特综合征症状延迟出现提供了解释。我们的研究表明,恢复瑞特神经元中KCC2的功能可能为瑞特综合征带来潜在的治疗方法。

相似文献

1
KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):751-6. doi: 10.1073/pnas.1524013113. Epub 2016 Jan 5.
3
Region-Specific KCC2 Rescue by rhIGF-1 and Oxytocin in a Mouse Model of Rett Syndrome.
Cereb Cortex. 2022 Jun 16;32(13):2885-2894. doi: 10.1093/cercor/bhab388.
4
5
KCC2 expression levels are reduced in post mortem brain tissue of Rett syndrome patients.
Acta Neuropathol Commun. 2019 Dec 3;7(1):196. doi: 10.1186/s40478-019-0852-x.
6
Graded and pan-neural disease phenotypes of Rett Syndrome linked with dosage of functional MeCP2.
Protein Cell. 2021 Aug;12(8):639-652. doi: 10.1007/s13238-020-00773-z. Epub 2020 Aug 27.
7
Ocular MECP2 protein expression in patients with and without Rett syndrome.
Pediatr Neurol. 2010 Jul;43(1):35-40. doi: 10.1016/j.pediatrneurol.2010.02.018.
9
An Astrocytic Influence on Impaired Tonic Inhibition in Hippocampal CA1 Pyramidal Neurons in a Mouse Model of Rett Syndrome.
J Neurosci. 2020 Aug 5;40(32):6250-6261. doi: 10.1523/JNEUROSCI.3042-19.2020. Epub 2020 Jul 2.
10
Modeling Rett Syndrome Using Human Induced Pluripotent Stem Cells.
CNS Neurol Disord Drug Targets. 2016;15(5):544-50. doi: 10.2174/1871527315666160413120156.

引用本文的文献

4
Protocol to study chloride regulation in cultured mouse cortical neurons using electrophysiology.
STAR Protoc. 2025 Mar 21;6(1):103628. doi: 10.1016/j.xpro.2025.103628. Epub 2025 Feb 8.
6
Development of KCC2 therapeutics to treat neurological disorders.
Front Mol Neurosci. 2024 Dec 10;17:1503070. doi: 10.3389/fnmol.2024.1503070. eCollection 2024.
8
The function of toward the development of excitatory and inhibitory cortical neurons.
Front Cell Neurosci. 2024 Sep 23;18:1465821. doi: 10.3389/fncel.2024.1465821. eCollection 2024.
9
HiPSC-derived 3D neural models reveal neurodevelopmental pathomechanisms of the Cockayne Syndrome B.
Cell Mol Life Sci. 2024 Aug 23;81(1):368. doi: 10.1007/s00018-024-05406-w.
10
Drug repurposing in Rett and Rett-like syndromes: a promising yet underrated opportunity?
Front Med (Lausanne). 2024 Jul 29;11:1425038. doi: 10.3389/fmed.2024.1425038. eCollection 2024.

本文引用的文献

1
MeCP2 regulates the timing of critical period plasticity that shapes functional connectivity in primary visual cortex.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):E4782-91. doi: 10.1073/pnas.1506499112. Epub 2015 Aug 10.
2
Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett Syndrome.
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9941-6. doi: 10.1073/pnas.1311685111. Epub 2014 Jun 23.
4
The developmental switch in GABA polarity is delayed in fragile X mice.
J Neurosci. 2014 Jan 8;34(2):446-50. doi: 10.1523/JNEUROSCI.4447-13.2014.
5
6
Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells.
Stem Cell Res. 2013 Sep;11(2):743-57. doi: 10.1016/j.scr.2013.05.002. Epub 2013 May 16.
7
An unexpected role of neuroligin-2 in regulating KCC2 and GABA functional switch.
Mol Brain. 2013 May 12;6:23. doi: 10.1186/1756-6606-6-23.
8
Treating Fragile X syndrome with the diuretic bumetanide: a case report.
Acta Paediatr. 2013 Jun;102(6):e288-90. doi: 10.1111/apa.12235.
9
A randomised controlled trial of bumetanide in the treatment of autism in children.
Transl Psychiatry. 2012 Dec 11;2(12):e202. doi: 10.1038/tp.2012.124.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验