Suppr超能文献

摘要:具有非正态缺失数据的稳健结构方程模型的检验统计量评估

Abstract: Evaluation of Test Statistics for Robust Structural Equation Modeling With Nonnormal Missing Data.

作者信息

Tong Xin, Zhang Zhiyong, Yuan Ke-Hai

机构信息

a Department of Psychology , University of Notre Dame.

出版信息

Multivariate Behav Res. 2011 Nov 30;46(6):1016. doi: 10.1080/00273171.2011.636715.

Abstract

Traditional structural equation modeling (SEM) techniques have trouble dealing with incomplete and/or nonnormal data that are often encountered in practice. Yuan and Zhang (2011a) developed a two-stage procedure for SEM to handle nonnormal missing data and proposed four test statistics for overall model evaluation. Although these statistics have been shown to work well with complete data, their performance for incomplete data has not been investigated in the context of robust statistics. Focusing on a linear growth curve model, a systematic simulation study is conducted to evaluate the accuracy of the parameter estimates and the performance of five test statistics including the naive statistic derived from normal distribution based maximum likelihood (ML), the Satorra-Bentler scaled chi-square statistic (RML), the mean- and variance-adjusted chi-square statistic (AML), Yuan-Bentler residual-based test statistic (CRADF), and Yuan-Bentler residual-based F statistic (RF). Data are generated and analyzed in R using the package rsem (Yuan & Zhang, 2011b). Based on the simulation study, we can observe the following: (a) The traditional normal distribution-based method cannot yield accurate parameter estimates for nonnormal data, whereas the robust method obtains much more accurate model parameter estimates for nonnormal data and performs almost as well as the normal distribution based method for normal distributed data. (b) With the increase of sample size, or the decrease of missing rate or the number of outliers, the parameter estimates are less biased and the empirical distributions of test statistics are closer to their nominal distributions. (c) The ML test statistic does not work well for nonnormal or missing data. (d) For nonnormal complete data, CRADF and RF work relatively better than RML and AML. (e) For missing completely at random (MCAR) missing data, in almost all the cases, RML and AML work better than CRADF and RF. (f) For nonnormal missing at random (MAR) missing data, CRADF and RF work better than AML. (g) The performance of the robust method does not seem to be influenced by the symmetry of outliers.

摘要

传统的结构方程建模(SEM)技术在处理实际中经常遇到的不完整和/或非正态数据时存在困难。袁和张(2011a)开发了一种用于SEM的两阶段程序来处理非正态缺失数据,并提出了四个用于整体模型评估的检验统计量。尽管这些统计量已被证明在完整数据上效果良好,但它们在不完整数据情况下的性能尚未在稳健统计的背景下进行研究。以线性增长曲线模型为重点,进行了一项系统的模拟研究,以评估参数估计的准确性以及五个检验统计量的性能,这五个检验统计量包括基于正态分布的最大似然(ML)得出的朴素统计量、萨托拉 - 本特勒尺度卡方统计量(RML)、均值和方差调整卡方统计量(AML)、基于袁 - 本特勒残差的检验统计量(CRADF)以及基于袁 - 本特勒残差的F统计量(RF)。使用R语言中的rsem软件包(袁和张,2011b)生成并分析数据。基于模拟研究,我们可以观察到以下几点:(a)传统的基于正态分布的方法对于非正态数据无法得出准确的参数估计,而稳健方法对于非正态数据能获得更准确的模型参数估计,并且在正态分布数据上的表现几乎与基于正态分布的方法一样好。(b)随着样本量的增加,或者缺失率或异常值数量的减少,参数估计的偏差减小,检验统计量的经验分布更接近其名义分布。(c)ML检验统计量在非正态或缺失数据情况下效果不佳。(d)对于非正态完整数据,CRADF和RF的表现相对优于RML和AML。(e)对于完全随机缺失(MCAR)的数据,在几乎所有情况下,RML和AML的表现优于CRADF和RF。(f)对于非正态随机缺失(MAR)的数据,CRADF和RF的表现优于AML。(g)稳健方法的性能似乎不受异常值对称性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验