Suppr超能文献

结构方程模型中不完全正态和非正态数据的期望信息与观测信息。

Expected versus observed information in SEM with incomplete normal and nonnormal data.

机构信息

Department of Psychology, University of British Columbia, 2136West Mall, Vancouver, British Columbia V6T 1Z4, Canada.

出版信息

Psychol Methods. 2010 Dec;15(4):352-67. doi: 10.1037/a0020143.

Abstract

Maximum likelihood is the most common estimation method in structural equation modeling. Standard errors for maximum likelihood estimates are obtained from the associated information matrix, which can be estimated from the sample using either expected or observed information. It is known that, with complete data, estimates based on observed or expected information are consistent. The situation changes with incomplete data. When the data are missing at random (MAR), standard errors based on expected information are not consistent, and observed information should be used. A less known fact is that in the presence of nonnormality, the estimated information matrix also enters the robust computations (both standard errors and the test statistic). Thus, with MAR nonnormal data, the use of the expected information matrix can potentially lead to incorrect robust computations. This article summarizes the results of 2 simulation studies that investigated the effect of using observed versus expected information estimates of standard errors and test statistics with normal and nonnormal incomplete data. Observed information is preferred across all conditions. Recommendations to researchers and software developers are outlined.

摘要

最大似然法是结构方程建模中最常用的估计方法。最大似然估计的标准误差是从相关的信息矩阵中得到的,该信息矩阵可以通过使用期望信息或观察信息从样本中进行估计。已知在完整数据的情况下,基于观察信息或期望信息的估计是一致的。但是,这种情况随着不完整数据而发生变化。当数据随机缺失(MAR)时,基于期望信息的标准误差不一致,因此应该使用观察信息。一个不太为人知的事实是,在非正态性的情况下,估计的信息矩阵也会进入稳健计算(包括标准误差和检验统计量)。因此,对于 MAR 非正态数据,使用期望信息矩阵可能会导致不正确的稳健计算。本文总结了 2 项模拟研究的结果,这些研究调查了在正态和非正态不完整数据下使用观察信息和期望信息估计标准误差和检验统计量的效果。在所有条件下,观察信息都更受欢迎。本文还概述了对研究人员和软件开发人员的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验