Suppr超能文献

迈向心电图与心冲击图关联的数值时频系统建模

Towards numerical temporal-frequency system modelling of associations between electrocardiogram and ballistocardiogram.

作者信息

Srinivasan Aravind, Zhang Haihong, Lin Zhiping, Biswas Jit, Chen Zhihao

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:394-7. doi: 10.1109/EMBC.2015.7318382.

Abstract

Ballistocardiogram (BCG) is a vital sign of ballistic forces generated by each heartbeat. With the advancements in related sensor and computing technologies in recent years, BCG has become far more accessible and thus regained its interest in both research and industry fields. Here we would like to promote the system modelling approach to BCG computing that allows to explore the underlying association between BCG and other physiological signals such as electrocardiogram (ECG). This is in contrast to most of the existing works in the related signal processing domain, which focus on detecting heart rate only. The system modelling approach may eventually improve the clinical significance of the BCG by extracting deeply embedded information. Towards this goal, here we present our preliminary study where we design a Wavelet-based temporal-frequency system model for associating BCG and ECG. To validate the model, we also collect simultaneous BCG and ECG recordings from 4 healthy subjects. We use the system model to build a BCG to ECG predicting algorithm. We demonstrate that this temporal-frequency model and algorithm is far superior, in terms of accuracy, to the naïve method of linear modelling.

摘要

心冲击图(BCG)是每次心跳产生的冲击力量的一种生命体征。近年来,随着相关传感器和计算技术的进步,BCG的获取变得更加容易,因此在研究和工业领域重新引起了人们的兴趣。在此,我们希望推广用于BCG计算的系统建模方法,该方法能够探索BCG与其他生理信号(如心电图(ECG))之间的潜在关联。这与相关信号处理领域的大多数现有工作形成对比,后者仅专注于检测心率。系统建模方法最终可能通过提取深度嵌入的信息来提高BCG的临床意义。为了实现这一目标,在此我们展示我们的初步研究,即我们设计了一个基于小波的时频系统模型来关联BCG和ECG。为了验证该模型,我们还收集了4名健康受试者同时记录的BCG和ECG数据。我们使用该系统模型构建了一种从BCG到ECG的预测算法。我们证明,就准确性而言,这种时频模型和算法远比简单的线性建模方法优越。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验