Suppr超能文献

解决电阻抗断层成像技术在头部应用中的建模误差问题。

Tackling modelling error in the application of electrical impedance tomography to the head.

作者信息

Ouypornkochagorn Taweechai, McCann Hugh, Polydorides Nick

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:622-5. doi: 10.1109/EMBC.2015.7318439.

Abstract

In the head application of Electrical Impedance Tomography (EIT), reconstruction of voltage measurements for a conductivity distribution image using an ordinary method, the absolute imaging approach, is impossible due to the traditional ignorance of modelling error. The modelling error comes from the inaccuracy of geometry and structure, which are unable to be known accurately in practice, and are usually large in head application of EIT. Difference imaging is an alternative approach which is able to reduce the size of this error, but it introduces other kinds of error. In this work, we demonstrate that in situations like head EIT, the nonlinear difference imaging approach can reconstruct difference conductivity effectively: the reduced modelling error and the new errors arising are able to be ignored, because they are much smaller than the original modelling error. The magnitude of conductivity change in the head-like situation is also investigated, and a selection scheme for the initial guess in the reconstruction process is also proposed.

摘要

在电阻抗断层成像(EIT)的头部应用中,使用普通方法(绝对成像方法)根据电导率分布图像重建电压测量值是不可能的,因为传统上忽略了建模误差。建模误差源于几何形状和结构的不准确,在实际中这些无法准确得知,并且在EIT的头部应用中通常很大。差分成像是一种能够减小这种误差大小的替代方法,但它会引入其他类型的误差。在这项工作中,我们证明在头部EIT这样的情况下,非线性差分成像方法能够有效地重建差分电导率:减小的建模误差和新出现的误差可以忽略不计,因为它们比原始建模误差小得多。还研究了类似头部情况下电导率变化的幅度,并提出了重建过程中初始猜测的选择方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验