Suppr超能文献

使用迭代稀疏技术从脑电图估计潜在神经元活动。

Estimating underlying neuronal activity from EEG using an iterative sparse technique.

作者信息

Sohrabpour Abbas

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:634-7. doi: 10.1109/EMBC.2015.7318442.

Abstract

In this paper a novel technique for solving the bio-electromagnetic inverse problem is proposed. This method provides information about the location and extent of underlying neuronal activity. This is essential for the presurgical planning for partial epilepsy patients who are resistant to anti-epileptic drugs. The proposed algorithm takes advantage of the fact that neuronal activity transparent to EEG, arises from a spatially extended brain region. This spatial coherence is modeled within the framework of sparse signal processing techniques and makes better use of the limited number of EEG recordings. An iterative data-driven weighting is also introduced to better the extent estimation as well as eliminating the need to threshold estimated solutions.

摘要

本文提出了一种用于解决生物电磁逆问题的新技术。该方法可提供有关潜在神经元活动的位置和范围的信息。这对于对抗癫痫药物有抗性的部分癫痫患者的术前规划至关重要。所提出的算法利用了这样一个事实,即对脑电图透明的神经元活动源自空间扩展的脑区。这种空间相干性在稀疏信号处理技术的框架内进行建模,并能更好地利用有限数量的脑电图记录。还引入了一种迭代数据驱动加权方法,以改善范围估计并消除对估计解进行阈值处理的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验