Suppr超能文献

通过时空偶极子聚类检测脑电图中的局灶性癫痫样事件。

Detection of focal epileptiform events in the EEG by spatio-temporal dipole clustering.

作者信息

Van Hese Peter, Vanrumste Bart, Hallez Hans, Carroll Grant J, Vonck Kristl, Jones Richard D, Bones Philip J, D'Asseler Yves, Lemahieu Ignace

机构信息

Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University-IBBT-IBiTech, De Pintelaan 185 Block B, B-9000 Ghent, Belgium.

Department of Electrical Engineering (ESAT/SCD), Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium; Katholieke Hogeschool Kempen, Kleinhoefstraat 4, B-2440 Geel, Belgium.

出版信息

Clin Neurophysiol. 2008 Aug;119(8):1756-1770. doi: 10.1016/j.clinph.2008.04.009. Epub 2008 May 21.

Abstract

OBJECTIVE

Methods for the detection of epileptiform events can be broadly divided into two main categories: temporal detection methods that exploit the EEG's temporal characteristics, and spatial detection methods that base detection on the results of an implicit or explicit source analysis. We describe how the framework of a spatial detection method was extended to improve its performance by including temporal information. This results in a method that provides (i) automated localization of an epileptogenic focus and (ii) detection of focal epileptiform events in an EEG recording. For the detection, only one threshold value needs to be set.

METHODS

The method comprises five consecutive steps: (1) dipole source analysis in a moving window, (2) automatic selection of focal brain activity, (3) dipole clustering to arrive at the identification of the epileptiform cluster, (4) derivation of a spatio-temporal template of the epileptiform activity, and (5) template matching. Routine EEG recordings from eight paediatric patients with focal epilepsy were labelled independently by two experts. The method was evaluated in terms of (i) ability to identify the epileptic focus, (ii) validity of the derived template, and (iii) detection performance. The clustering performance was evaluated using a leave-one-out cross validation. Detection performance was evaluated using Precision-Recall curves and compared to the performance of two temporal (mimetic and wavelet based) and one spatial (dipole analysis based) detection methods.

RESULTS

The method succeeded in identifying the epileptogenic focus in seven of the eight recordings. For these recordings, the mean distance between the epileptic focus estimated by the method and the region indicated by the labelling of the experts was 8mm. Except for two EEG recordings where the dipole clustering step failed, the derived template corresponded to the epileptiform activity marked by the experts. Over the eight EEGs, the method showed a mean sensitivity and selectivity of 92 and 77%, respectively.

CONCLUSIONS

The method allows automated localization of the epileptogenic focus and shows good agreement with the region indicated by the labelling of the experts. If the dipole clustering step is successful, the method allows a detection of the focal epileptiform events, and gave a detection performance comparable or better to that of the other methods.

SIGNIFICANCE

The identification and quantification of epileptiform events is of considerable importance in the diagnosis of epilepsy. Our method allows the automatic identification of the epileptic focus, which is of value in epilepsy surgery. The method can also be used as an offline exploration tool for focal EEG activity, displaying the dipole clusters and corresponding time series.

摘要

目的

癫痫样事件的检测方法大致可分为两大类:利用脑电图时间特征的时间检测方法,以及基于隐式或显式源分析结果进行检测的空间检测方法。我们描述了如何扩展一种空间检测方法的框架,通过纳入时间信息来提高其性能。这产生了一种能够(i)自动定位致痫灶,以及(ii)在脑电图记录中检测局灶性癫痫样事件的方法。对于检测而言,仅需设置一个阈值。

方法

该方法包括五个连续步骤:(1)在移动窗口中进行偶极子源分析;(2)自动选择局灶性脑活动;(3)偶极子聚类以确定癫痫样簇;(4)推导癫痫样活动的时空模板;(5)模板匹配。八名患有局灶性癫痫的儿科患者的常规脑电图记录由两名专家独立标记。该方法在以下方面进行了评估:(i)识别癫痫灶的能力;(ii)推导模板的有效性;(iii)检测性能。使用留一法交叉验证评估聚类性能。使用精确召回率曲线评估检测性能,并与两种基于时间(模拟和小波)和一种基于空间(偶极子分析)的检测方法的性能进行比较。

结果

该方法在八份记录中的七份中成功识别出致痫灶。对于这些记录,该方法估计的癫痫灶与专家标记所指示区域之间的平均距离为8毫米。除了两份偶极子聚类步骤失败的脑电图记录外,推导的模板与专家标记的癫痫样活动相对应。在八份脑电图中,该方法的平均灵敏度和选择性分别为92%和77%。

结论

该方法能够自动定位致痫灶,并且与专家标记所指示的区域显示出良好的一致性。如果偶极子聚类步骤成功,该方法能够检测局灶性癫痫样事件,并且其检测性能与其他方法相当或更好。

意义

癫痫样事件的识别和量化在癫痫诊断中具有相当重要的意义。我们的方法能够自动识别癫痫灶,这在癫痫手术中具有价值。该方法还可以用作局灶性脑电图活动的离线探索工具,显示偶极子簇和相应的时间序列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验