Suppr超能文献

加速度计人体传感器网络通过可穿戴心冲击图改善收缩期时间间隔评估。

Accelerometer body sensor network improves systolic time interval assessment with wearable ballistocardiography.

作者信息

Wiens Andrew D, Inan Omer T

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:1833-6. doi: 10.1109/EMBC.2015.7318737.

Abstract

Systolic time intervals (STI) are non-invasive measures of cardiac function. Due to the fact that STI can be measured noninvasively outside the clinic, STI are a promising method for long-term monitoring of patients with cardiovascular disease. In particular, the pre-ejection period (PEP) has been measured successfully from body vibrations of the beating heart, a technique called ballistocardiography (BCG), using a weighing scale. Similar measurements can be made with on-body accelerometers, however these wearable BCG signals are typically more challenging to interpret than whole-body BCG. In this paper, we conducted a small pilot study with four subjects to investigate whether a body sensor network of four accelerometers positioned on the wrist, arm, sternum, and head could improve beat-by-beat PEP prediction beyond that of each sensor alone. Linear models were fitted from the R-J and R-I intervals of the four BCG signals to PEP measured with impedance cardiography from 5-minute recordings after isometric lower-body exercise. Specifically, we found that (i) the RMS error of PEP estimation from the wearable BCG sensors can be reduced by using double integration, (ii) the standard deviation of PEP estimates from R-I intervals was smaller than from R-J intervals, and (iii) linear models combining both R-J and R-I measurements from all sensors resulted in the best average correlation (r(2) = 0.96 ± 0.01) and lowest average root mean square error (2.5 ± 0.8 ms) from 5×2-fold cross validation.

摘要

收缩期时间间期(STI)是心脏功能的无创测量指标。由于STI可在诊所外进行无创测量,因此它是对心血管疾病患者进行长期监测的一种有前景的方法。特别是,射血前期(PEP)已通过一种名为心冲击图描记法(BCG)的技术,利用体重秤从跳动心脏的身体振动中成功测量出来。使用身体上的加速度计也可以进行类似的测量,然而这些可穿戴BCG信号通常比全身BCG信号更难解释。在本文中,我们对四名受试者进行了一项小型试点研究,以调查由位于手腕、手臂、胸骨和头部的四个加速度计组成的身体传感器网络是否能比每个单独的传感器更准确地逐搏预测PEP。从四个BCG信号的R-J和R-I间期拟合线性模型,以预测等长下半身运动后5分钟记录中通过阻抗心动图测量的PEP。具体而言,我们发现:(i)通过使用双重积分可以降低可穿戴BCG传感器估计PEP的均方根误差;(ii)从R-I间期估计的PEP的标准差小于从R-J间期估计的标准差;(iii)结合所有传感器的R-J和R-I测量值的线性模型在5×2折交叉验证中具有最佳的平均相关性(r(2) = 0.96 ± 0.01)和最低的平均均方根误差(2.5 ± 0.8毫秒)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验