Suppr超能文献

经验模态分解应用于无创子宫电信号去噪。

Empirical mode decomposition applied for non-invasive electrohysterograhic signals denoising.

作者信息

Taralunga Dragos Daniel, Ungureanu Mihaela, Hurezeanu Bogdan, Gussi Ilinca, Strungaru Rodica

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4134-7. doi: 10.1109/EMBC.2015.7319304.

Abstract

The electrical activity of the uterus, i.e. the electrohysterogram (EHG), is one of the most prominent tool for preterm labour. There is no standard acquisition set up and often the EHG is corrupted with different types of noise: maternal and fetal electrocardiogram (mECG, fECG), electrical activity of the skeletal muscles, movement artifacts, power line interference (PLI) etc. Moreover, some of these noises overlap in frequency domain with the EHG. Thus, simple linear filtering approaches are not adequate. In this paper the empirical mode decomposition (EMD), a simple and data driven method, is proposed for EHG denoising. The method is evaluated on simulated data having different signal to noise ratios (SNRs) obtaining promising results.

摘要

子宫的电活动,即子宫电图(EHG),是早产最显著的工具之一。目前尚无标准的采集设置,并且EHG常常受到不同类型噪声的干扰:母体和胎儿心电图(mECG、fECG)、骨骼肌的电活动、运动伪影、电力线干扰(PLI)等。此外,其中一些噪声在频域上与EHG重叠。因此,简单的线性滤波方法并不适用。本文提出了一种简单的数据驱动方法——经验模态分解(EMD)用于EHG去噪。该方法在具有不同信噪比(SNR)的模拟数据上进行了评估,取得了有前景的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验