Suppr超能文献

联合典型相关分析和经验模态分解在去噪分娩电描记图中的应用。

Combination of canonical correlation analysis and empirical mode decomposition applied to denoising the labor electrohysterogram.

机构信息

Compiègnes University, Compiègne 60200, France.

出版信息

IEEE Trans Biomed Eng. 2011 Sep;58(9):2441-7. doi: 10.1109/TBME.2011.2151861. Epub 2011 May 10.

Abstract

The electrohysterogram (EHG) is often corrupted by electronic and electromagnetic noise as well as movement artifacts, skeletal electromyogram, and ECGs from both mother and fetus. The interfering signals are sporadic and/or have spectra overlapping the spectra of the signals of interest rendering classical filtering ineffective. In the absence of efficient methods for denoising the monopolar EHG signal, bipolar methods are usually used. In this paper, we propose a novel combination of blind source separation using canonical correlation analysis (BSS_CCA) and empirical mode decomposition (EMD) methods to denoise monopolar EHG. We first extract the uterine bursts by using BSS_CCA then the biggest part of any residual noise is removed from the bursts by EMD. Our algorithm, called CCA_EMD, was compared with wavelet filtering and independent component analysis. We also compared CCA_EMD with the corresponding bipolar signals to demonstrate that the new method gives signals that have not been degraded by the new method. The proposed method successfully removed artifacts from the signal without altering the underlying uterine activity as observed by bipolar methods. The CCA_EMD algorithm performed considerably better than the comparison methods.

摘要

电子宫描记图(EHG)经常受到电子和电磁噪声以及运动伪影、骨骼肌电图和来自母亲和胎儿的 ECG 的干扰。干扰信号是零星的,或者具有与感兴趣信号的频谱重叠的频谱,使得经典滤波无效。在没有有效的方法对单极 EHG 信号进行去噪的情况下,通常使用双极方法。在本文中,我们提出了一种使用典型相关分析(BSS_CCA)和经验模态分解(EMD)方法的盲源分离的新组合,以对单极 EHG 进行去噪。我们首先使用 BSS_CCA 提取子宫爆发,然后使用 EMD 从爆发中去除任何残留噪声的最大部分。我们的算法称为 CCA_EMD,与小波滤波和独立成分分析进行了比较。我们还将 CCA_EMD 与相应的双极信号进行了比较,以证明该新方法给出的信号没有被新方法降级。该方法成功地去除了信号中的伪影,而没有改变双极方法观察到的子宫活动的基本情况。CCA_EMD 算法的性能明显优于比较方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验