Suppr超能文献

用于从胃电信号中提取慢波的经验模态分解

Empirical Mode Decomposition for slow wave extraction from electrogastrographical signals.

作者信息

Mika Barbara, Komorowski Dariusz, Tkacz Ewaryst

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4138-41. doi: 10.1109/EMBC.2015.7319305.

Abstract

The aim of this study was to investigate the effectiveness of Empirical Mode Decomposition (EMD) for slow wave extraction from multichannel electrogastrographical signal (EGG) the cutaneous recording of gastric myoelectrical activity. From the pacemaker region of stomach both spontaneous depolarization and repolarization occur generating the myoelectrical waves that are called the gastric pacesetter potentials, or slow waves. The 3 cycles per minute (3pcm) (0.05Hz) slow wave is fundamental electrical phenomenon in stomach responsible for the propagation and maximum frequency of stomach contractions. Appropriate spread of gastric contractions is a key for the correct stomach emptying whereas delay in this action causes various gastric disorders, such as bloating, vomiting or unexplained nausea. Unfortunately the EGG signal is not a pure one but usually a sort of mixture consisting of respiratory signals, cardiac signals, random noise and possible myoelectrical activity from other organs surrounding the stomach, such as duodenum or small intestine. Identify and removal of contaminations from different artifactual sources from the EGG recording is a major task before EGG analysis and interpretation. The use of EMD method and Hilbert spectrum combination for slow wave extraction from raw EGG signal seems to be a good choice, because this adaptive decomposition technique is unique suitable for both nolinear, no-stationary data analysis.

摘要

本研究的目的是探讨经验模态分解(EMD)从多通道胃电图信号(EGG)中提取慢波的有效性,EGG是胃肌电活动的体表记录。在胃的起搏区域,自发去极化和复极化都会发生,产生被称为胃起搏电位或慢波的肌电波。每分钟3个周期(3pcm)(0.05Hz)的慢波是胃中的基本电现象,负责胃收缩的传播和最大频率。胃收缩的适当传播是胃正确排空的关键,而这一过程的延迟会导致各种胃部疾病,如腹胀、呕吐或不明原因的恶心。不幸的是,EGG信号并非纯净信号,通常是一种混合信号,包括呼吸信号、心脏信号、随机噪声以及来自胃周围其他器官(如十二指肠或小肠)可能的肌电活动。在对EGG进行分析和解读之前,识别并去除EGG记录中不同人为来源的干扰是一项主要任务。使用EMD方法和希尔伯特谱相结合从原始EGG信号中提取慢波似乎是一个不错的选择,因为这种自适应分解技术特别适用于非线性、非平稳数据分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验