Suppr超能文献

一种用于从临床量表和患者报告结局中检测多发性硬化病程的机器学习流程。

A machine learning pipeline for multiple sclerosis course detection from clinical scales and patient reported outcomes.

作者信息

Fiorini Samuele, Verri Alessandro, Tacchino Andrea, Ponzio Michela, Brichetto Giampaolo, Barla Annalisa

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:4443-6. doi: 10.1109/EMBC.2015.7319381.

Abstract

In this work we present a machine learning pipeline for the detection of multiple sclerosis course from a collection of inexpensive and non-invasive measures such as clinical scales and patient-reported outcomes. The proposed analysis is conducted on a dataset coming from a clinical study comprising 457 patients affected by multiple sclerosis. The 91 collected variables describe patients mobility, fatigue, cognitive performance, emotional status, bladder continence and quality of life. A preliminary data exploration phase suggests that the group of patients diagnosed as Relapsing-Remitting can be isolated from other clinical courses. Supervised learning algorithms are then applied to perform feature selection and course classification. Our results confirm that clinical scales and patient-reported outcomes can be used to classify Relapsing-Remitting patients.

摘要

在这项工作中,我们提出了一种机器学习流程,用于从一系列低成本且非侵入性的测量数据(如临床量表和患者报告的结果)中检测多发性硬化症的病程。所提出的分析是在一个来自临床研究的数据集上进行的,该数据集包含457名受多发性硬化症影响的患者。收集到的91个变量描述了患者的行动能力、疲劳程度、认知表现、情绪状态、膀胱控制能力和生活质量。初步的数据探索阶段表明,被诊断为复发缓解型的患者组可以与其他临床病程区分开来。然后应用监督学习算法进行特征选择和病程分类。我们的结果证实,临床量表和患者报告的结果可用于对复发缓解型患者进行分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验