Fiorini Samuele, Verri Alessandro, Tacchino Andrea, Ponzio Michela, Brichetto Giampaolo, Barla Annalisa
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:4443-6. doi: 10.1109/EMBC.2015.7319381.
In this work we present a machine learning pipeline for the detection of multiple sclerosis course from a collection of inexpensive and non-invasive measures such as clinical scales and patient-reported outcomes. The proposed analysis is conducted on a dataset coming from a clinical study comprising 457 patients affected by multiple sclerosis. The 91 collected variables describe patients mobility, fatigue, cognitive performance, emotional status, bladder continence and quality of life. A preliminary data exploration phase suggests that the group of patients diagnosed as Relapsing-Remitting can be isolated from other clinical courses. Supervised learning algorithms are then applied to perform feature selection and course classification. Our results confirm that clinical scales and patient-reported outcomes can be used to classify Relapsing-Remitting patients.
在这项工作中,我们提出了一种机器学习流程,用于从一系列低成本且非侵入性的测量数据(如临床量表和患者报告的结果)中检测多发性硬化症的病程。所提出的分析是在一个来自临床研究的数据集上进行的,该数据集包含457名受多发性硬化症影响的患者。收集到的91个变量描述了患者的行动能力、疲劳程度、认知表现、情绪状态、膀胱控制能力和生活质量。初步的数据探索阶段表明,被诊断为复发缓解型的患者组可以与其他临床病程区分开来。然后应用监督学习算法进行特征选择和病程分类。我们的结果证实,临床量表和患者报告的结果可用于对复发缓解型患者进行分类。