Suppr超能文献

基于线性判别分析的癫痫脑电图可视化与可听化

Epileptic EEG visualization and sonification based on linear discriminate analysis.

作者信息

Cichocki Andrzej

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:4466-9. doi: 10.1109/EMBC.2015.7319386.

Abstract

In this paper, we first presents a high accuracy epileptic electroencephalogram (EEG) classification algorithm. EEG data of epilepsy patients are preprocessed, segmented, and decomposed to intrinsic mode functions, from which features are extracted. Two classifiers are trained based on linear discriminant analysis (LDA) to classify EEG data into three types, i.e., normal, spike, and seizure. We further in-depth investigate the changes of the decision values in LDA on continuous EEG data. An epileptic EEG visualization and sonification algorithm is proposed to provide both temporal and spatial information of spike and seizure of epilepsy patients. In the experiment, EEG data of six subjects (two normal and four seizure patients) are included. The experiment result shows the proposed epileptic EEG classification algorithm achieves high accuracy. As well, the visualization and sonification algorithm exhibits a great help in nursing seizure patients and localizing the area of seizures.

摘要

在本文中,我们首先提出了一种高精度的癫痫脑电图(EEG)分类算法。对癫痫患者的脑电图数据进行预处理、分段,并分解为固有模态函数,从中提取特征。基于线性判别分析(LDA)训练两个分类器,将脑电图数据分为三种类型,即正常、尖峰和癫痫发作。我们进一步深入研究了LDA对连续脑电图数据决策值的变化。提出了一种癫痫脑电图可视化和可听化算法,以提供癫痫患者尖峰和癫痫发作的时间和空间信息。在实验中,纳入了六名受试者(两名正常人和四名癫痫患者)的脑电图数据。实验结果表明,所提出的癫痫脑电图分类算法具有很高的准确率。此外,可视化和可听化算法在护理癫痫发作患者和定位癫痫发作区域方面表现出很大的帮助。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验