Gupta Garima, Kulasekaran S, Ram Keerthi, Joshi Niranjan, Sivaprakasam Mohanasankar, Gandhi Rashmin
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:5642-5. doi: 10.1109/EMBC.2015.7319672.
Advanced (proliferative) stage of diabetic retinopathy (DR) is indicated by the growth of thin, fragile and highly unregulated vessels, neovascularization (NV). In order to identify proliferative diabetic retinopathy (PDR), our approach models the micro-pattern of local variations using texture based analysis and quantifies the structural changes in vessel patterns in localized patches, to map them to the confidence score of being neovascular using supervised learning framework. Rule-based criteria on patch-level neovascularity scores in an image is used for the decision of absence or presence of PDR. Evaluated using 3 datasets, our method achieves 96% sensitivity and 92.6% specificity for localizing NV. Image-level identification of PDR achieves high sensitivity of 96.72% at 79.6% specificity and high specificity of 96.50% at 73.22% sensitivity. Our approach could have potential application in DR grading where it can localize NVE regions and identify PDR images for immediate intervention.
糖尿病视网膜病变(DR)的晚期(增殖期)表现为细小、脆弱且高度无序的血管生长,即新生血管形成(NV)。为了识别增殖性糖尿病视网膜病变(PDR),我们的方法使用基于纹理的分析对局部变化的微观模式进行建模,并量化局部斑块中血管模式的结构变化,以便使用监督学习框架将其映射到新生血管的置信度得分。基于图像中斑块级新生血管评分的规则标准用于判定PDR的有无。通过3个数据集进行评估,我们的方法在定位NV方面达到了96%的灵敏度和92.6%的特异性。PDR的图像级识别在特异性为79.6%时达到了96.72%的高灵敏度,在灵敏度为73.22%时达到了96.50%的高特异性。我们的方法在DR分级中可能具有潜在应用,它可以定位NVE区域并识别PDR图像以便立即进行干预。