Department of Electrical Engineering, IIT Madras, India.
Healthcare Technology Innovation Centre, IIT Madras, India.
Comput Med Imaging Graph. 2017 Jan;55:124-132. doi: 10.1016/j.compmedimag.2016.08.005. Epub 2016 Aug 10.
Neovascularization (NV) is a characteristic of the onset of sight-threatening stage of DR, called proliferative DR (PDR). Identification of PDR requires modeling of these unregulated ill-formed vessels, and other associated signs of PDR. We present an approach that models the micro-pattern of local variations (using texture based analysis) and quantifies structural changes in vessel patterns in localized patches, to arrive at a score of neovascularity. The distribution of patch-level confidence scores is collated into an image-level decision of presence or absence of PDR. Evaluated on a dataset of 779 images combining public data and clinical data from local hospitals, the patch-level neovascularity prediction has a sensitivity of 92.4% at 92.6% specificity. For image-level PDR identification our method is shown to achieve sensitivity of 83.3% at a high specificity operating point of 96.1% specificity, and specificity of 83% at high sensitivity operating point of 92.2% sensitivity. Our approach could have potential application in DR grading where it can localize NVE regions and identify PDR images for immediate intervention.
血管新生(NV)是导致威胁视力的 DR 即增生性 DR(PDR)发生的特征。PDR 的识别需要对这些不受调节的畸形血管以及 PDR 的其他相关迹象进行建模。我们提出了一种方法,该方法可对局部变化的微模式(使用基于纹理的分析)进行建模,并对局部斑块中血管模式的结构变化进行量化,从而得出血管新生分数。将斑块级置信度分数的分布整理为 PDR 存在或不存在的图像级决策。在结合了公共数据和本地医院临床数据的 779 张图像的数据集上进行评估,斑块级新生血管预测在 92.6%特异性的高特异性工作点处具有 92.4%的灵敏度。对于图像级 PDR 识别,我们的方法在 96.1%特异性的高特异性工作点处具有 83.3%的灵敏度,在 92.2%灵敏度的高灵敏度工作点处具有 83%的特异性。我们的方法可应用于 DR 分级,可定位 NVE 区域并识别需要立即干预的 PDR 图像。