Hernandez-Matas Carlos, Zabulis Xenophon, Argyros Antonis A
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:5650-4. doi: 10.1109/EMBC.2015.7319674.
In this work, an image registration method for two retinal images is proposed. The proposed method utilizes keypoint correspondences and assumes a spherical model of the eye. Image registration is treated as a pose estimation problem, which requires estimation of the rigid transformation that relates the two images. Using this estimate, one image can be warped so that it is registered to the coordinate frame of the other. Experimental evaluation shows improved accuracy over state-of-the-art approaches as well as robustness to noise and spurious keypoint correspondences. Experiments also indicate the method's applicability to diagnostic image enhancement and comparative analysis of images from different examinations.
在这项工作中,提出了一种用于两幅视网膜图像的图像配准方法。所提出的方法利用关键点对应关系,并假设眼睛的球面模型。图像配准被视为一个姿态估计问题,这需要估计关联两幅图像的刚体变换。利用这个估计值,可以对一幅图像进行扭曲,使其与另一幅图像的坐标系配准。实验评估表明,与现有方法相比,该方法具有更高的准确性,并且对噪声和虚假关键点对应关系具有鲁棒性。实验还表明了该方法在诊断图像增强以及不同检查图像的对比分析中的适用性。