Australian E Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Perth, Australia.
J Med Syst. 2018 Feb 17;42(4):57. doi: 10.1007/s10916-018-0911-z.
In this paper we systematically evaluate the performance of several state-of-the-art local feature detectors and descriptors in the context of longitudinal registration of retinal images. Longitudinal (temporal) registration facilitates to track the changes in the retina that has happened over time. A wide number of local feature detectors and descriptors exist and many of them have already applied for retinal image registration, however, no comparative evaluation has been made so far to analyse their respective performance. In this manuscript we evaluate the performance of the widely known and commonly used detectors such as Harris, SIFT, SURF, BRISK, and bifurcation and cross-over points. As of descriptors SIFT, SURF, ALOHA, BRIEF, BRISK and PIIFD are used. Longitudinal retinal image datasets containing a total of 244 images are used for the experiment. The evaluation reveals some potential findings including more robustness of SURF and SIFT keypoints than the commonly used bifurcation and cross-over points, when detected on the vessels. SIFT keypoints can be detected with a reliability of 59% for without pathology images and 45% for with pathology images. For SURF keypoints these values are respectively 58% and 47%. ALOHA descriptor is best suited to describe SURF keypoints, which ensures an overall matching accuracy, distinguishability of 83%, 93% and 78%, 83% for without pathology and with pathology images respectively.
在本文中,我们系统地评估了几种最先进的局部特征检测器和描述符在视网膜图像纵向配准中的性能。纵向(时间)配准有助于跟踪随时间发生的视网膜变化。存在大量的局部特征检测器和描述符,其中许多已经应用于视网膜图像配准,但迄今为止尚未进行比较评估来分析它们各自的性能。在本文中,我们评估了广泛使用和常用的检测器的性能,如 Harris、SIFT、SURF、BRISK 和分叉和交叉点。作为描述符,使用了 SIFT、SURF、ALOHA、BRIEF、BRISK 和 PIIFD。实验使用了总共包含 244 张图像的纵向视网膜图像数据集。评估结果揭示了一些潜在的发现,包括在血管上检测到的 SURF 和 SIFT 关键点比常用的分叉和交叉点更具鲁棒性。SIFT 关键点在无病变图像中的检测可靠性为 59%,在有病变图像中的检测可靠性为 45%。对于 SURF 关键点,这些值分别为 58%和 47%。ALOHA 描述符最适合描述 SURF 关键点,它确保了整体匹配精度,对于无病变和有病变图像的区分度分别为 83%、93%和 78%、83%。