Suppr超能文献

一种用于在容积描记数据中稳健检测心跳的监督学习方法。

A supervised learning approach for the robust detection of heart beat in plethysmographic data.

作者信息

Grisan Enrico, Cantisani Giorgia, Tarroni Giacomo, Rossi Michele

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:5825-8. doi: 10.1109/EMBC.2015.7319716.

Abstract

Wearable devices equipped with photoplethysmography (PPG) sensors are gaining an increased interest in the context of biometric signal monitoring within clinical, e-health and fitness settings. When used in everyday life and during exercise, PPG traces are heavily affected by artifacts originating from motion and from a non constant positioning and contact of the PPG sensor with the skin. Many algorithms have been developed for the estimation of heart-rate from photoplethysmography signals. We remark that they were mainly conceived and tested in controlled settings and, in turn, do not provide robust performance, even during moderate exercise. Only a few of them have been designed for signals acquired at rest and during fitness. However, they provide the required resilience to motion artifacts at the cost of using computationally demanding signal processing tools. At variance with other methods from the literature, we propose a supervised learning approach, where a classifier is trained on a set of labelled data to detect the presence of heart beats at each position of a PPG signal, with only little preprocessing and postprocessing. We show that the results obtained on the TROIKA dataset using our approach are comparable with those shown in the original paper, providing a classification error of 14% in the detection of heart beat positions, that reduces to 2.86% on the heart-rate estimates after the postprocessing step.

摘要

在临床、电子健康和健身环境中的生物特征信号监测背景下,配备光电容积脉搏波描记法(PPG)传感器的可穿戴设备正越来越受到关注。在日常生活和运动过程中,PPG信号会受到来自运动以及PPG传感器与皮肤的非恒定定位和接触所产生的伪影的严重影响。已经开发了许多用于从光电容积脉搏波描记法信号估计心率的算法。我们注意到,这些算法主要是在受控环境中构思和测试的,因此即使在适度运动期间也无法提供强大的性能。其中只有少数是为在休息和健身期间采集的信号设计的。然而,它们以使用计算要求高的信号处理工具为代价来提供所需的抗运动伪影能力。与文献中的其他方法不同,我们提出了一种监督学习方法,其中在一组标记数据上训练分类器,以在仅进行很少的预处理和后处理的情况下检测PPG信号每个位置的心跳存在情况。我们表明,使用我们的方法在TROIKA数据集上获得的结果与原始论文中显示的结果相当,在心跳位置检测中的分类误差为14%,在后处理步骤后的心率估计中降至2.86%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验