Suppr超能文献

多波长光电容积脉搏波信号的轻量级机器学习算法异常检测

Anomaly Detection in Multi-Wavelength Photoplethysmography Using Lightweight Machine Learning Algorithms.

机构信息

Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium.

Department of Biomedical Engineering, Universidad de Oriente, Santiago de Cuba 90500, Cuba.

出版信息

Sensors (Basel). 2023 Aug 4;23(15):6947. doi: 10.3390/s23156947.

Abstract

Over the past few years, there has been increased interest in photoplethysmography (PPG) technology, which has revealed that, in addition to heart rate and oxygen saturation, the pulse shape of the PPG signal contains much more valuable information. Lately, the wearable market has shifted towards a multi-wavelength and multichannel approach to increase signal robustness and facilitate the extraction of other intrinsic information from the signal. This transition presents several challenges related to complexity, accuracy, and reliability of algorithms. To address these challenges, anomaly detection stages can be employed to increase the accuracy and reliability of estimated parameters. Powerful algorithms, such as lightweight machine learning (ML) algorithms, can be used for anomaly detection in multi-wavelength PPG (MW-PPG). The main contributions of this paper are proposing a set of features with high information gain for anomaly detection in MW-PPG signals in the classification context, assessing the impact of window size and evaluating various lightweight ML models to achieve highly accurate anomaly detection, and examining the effectiveness of MW-PPG signals in detecting artifacts.

摘要

在过去的几年中,光电容积脉搏波(PPG)技术引起了越来越多的关注,该技术表明,除了心率和血氧饱和度之外,PPG 信号的脉搏形状还包含更多有价值的信息。最近,可穿戴市场已经转向多波长和多通道方法,以提高信号的稳健性,并方便从信号中提取其他内在信息。这种转变带来了与算法的复杂性、准确性和可靠性相关的几个挑战。为了解决这些挑战,可以采用异常检测阶段来提高估计参数的准确性和可靠性。强大的算法,如轻量级机器学习(ML)算法,可以用于多波长 PPG(MW-PPG)中的异常检测。本文的主要贡献是: 在分类上下文中提出了一组具有高信息增益的特征,用于 MW-PPG 信号中的异常检测; 评估了窗口大小的影响,并评估了各种轻量级 ML 模型,以实现高度准确的异常检测; 研究了 MW-PPG 信号在检测伪影方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42fa/10422657/1a9909d919d7/sensors-23-06947-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验