Suppr超能文献

一种用于心音图信号噪声检测的低复杂度多通道方法。

A low-complex multi-channel methodology for noise detection in phonocardiogram signals.

作者信息

Nunes Diogo, Leal Adriana, Couceiro Ricardo, Henriques Jorge, Mendes Luís, Carvalho Paulo, Teixeira César

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:5936-9. doi: 10.1109/EMBC.2015.7319743.

Abstract

The phonocardiography (PCG) is an important technique for the diagnosis of several heart conditions. However, the PCG signal is highly prone to noise, which can be an obstacle for the detection and interpretation of physiological heart sounds. Thus, the detection and elimination of noise present in PCG signals is crucial for the accurate analysis of heart sounds, especially in p-health environments. Noise can be introduced by various internal factors (e.g., respiration and laughing) and by external conditions (e.g., phone ringing or door closing). To mention also that the noise frequency components are typically overlapped with the PCG spectrum, increasing the complexity of the analysis. The purpose of the present work consists in the detection of noisy periods willfully introduced during the performance of three different sets of tasks. The developed method returns the classification of the signal content, in a window-by-window analysis and can be divided in two distinct phases. The first step consists in the search for a noise free window using a feature obtained from the PCG time-domain. In the second step, the noise free window is compared with the remaining signal. The classification between clean and contaminated PCG is performed using two features from the frequency domain. The algorithm was able to discriminate clean from contamined PCG sections with an average sensitivity and specificity of 95.59% and 92.68%, respectively.

摘要

心音图(PCG)是诊断多种心脏疾病的一项重要技术。然而,PCG信号极易受到噪声干扰,这可能会妨碍对生理性心音的检测与解读。因此,检测并消除PCG信号中的噪声对于准确分析心音至关重要,尤其是在移动健康环境中。噪声可能由各种内部因素(如呼吸和大笑)以及外部条件(如电话铃声或关门声)引入。还需提及的是,噪声频率成分通常与PCG频谱重叠,增加了分析的复杂性。本研究的目的在于检测在执行三组不同任务期间故意引入的噪声时段。所开发的方法在逐窗口分析中返回信号内容的分类,可分为两个不同阶段。第一步是利用从PCG时域获得的一个特征来寻找无噪声窗口。第二步是将无噪声窗口与其余信号进行比较。使用频域中的两个特征对干净的和受污染的PCG进行分类。该算法能够区分干净的和受污染的PCG部分,平均灵敏度和特异性分别为95.59%和92.68%。

相似文献

9
Noise detection during heart sound recording.心音记录过程中的噪声检测。
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3119-23. doi: 10.1109/IEMBS.2009.5332569.
10
Analysis of phonocardiogram signals using wavelet transform.使用小波变换分析心音图信号。
J Med Eng Technol. 2012 Aug;36(6):283-302. doi: 10.3109/03091902.2012.684830. Epub 2012 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验