Suppr超能文献

心音记录过程中的噪声检测。

Noise detection during heart sound recording.

作者信息

Kumar D, Carvalho P, Antunes M, Henriques J

机构信息

Department of Informatics Engineering of the University of Coimbra, Polo-II, Coimbra, Portugal.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3119-23. doi: 10.1109/IEMBS.2009.5332569.

Abstract

Heart sound is a valuable biosignal for early detection of a large set of cardiac diseases. Ambient and physiological noise interference is one of the most usual and high probable incidents during heart sound acquisition. It may change the prominent and crucial characteristics of heart sound which may possess important information for heart disease diagnosis. In this paper, we propose a new method to detect ambient and internal body noises in heart sounds. The algorithm utilizes physiologically inspired periodicity/semi-periodicity criteria. A small segment of clean heart sound exhibiting periodicity in the time and in the frequency domain is first detected. The sound segment is used as a template to detect uncontaminated heart sounds during recording. The technique has been tested on the heart sounds contaminated with several types of noises, recorded from 68 different subjects. Average sensitivity of 95.13% and specificity of 98.65% for non-cardiac sound detection were achieved.

摘要

心音是用于早期检测大量心脏疾病的重要生物信号。在获取心音过程中,环境噪声和生理噪声干扰是最常见且很可能发生的情况之一。它可能会改变心音的显著和关键特征,而这些特征可能包含心脏病诊断的重要信息。在本文中,我们提出了一种检测心音中环境噪声和体内噪声的新方法。该算法利用了受生理启发的周期性/半周期性标准。首先检测一小段在时域和频域均呈现周期性的纯净心音。该声音片段用作模板,以在记录过程中检测未受污染的心音。该技术已在从68名不同受试者记录的、被多种类型噪声污染的心音上进行了测试。非心音检测的平均灵敏度达到95.13%,特异性达到98.65%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验