Suppr超能文献

蛋白质结构内流动性的核磁共振研究。

NMR studies of mobility within protein structure.

作者信息

Williams R J

机构信息

Inorganic Chemistry Laboratory, University of Oxford.

出版信息

Eur J Biochem. 1989 Aug 15;183(3):479-97. doi: 10.1111/j.1432-1033.1989.tb21076.x.

Abstract

NMR studies of dynamics within structure have revealed that a quite new approach to protein structure and its relation to function is necessary. This approach requires the consideration in detail of the following: 1. Local movements of groups and small segments to allow fast recognition and fitting. The motion concerns on/off rates as well as binding. The observations affect surface/surface recognition, e.g. of antigen/antibody as well as of substrate and protein. 2. Somewhat larger interdomain or N- and C-terminal segments which allow rearrangement. Cases in point are the movement of segments in blood-clotting proteins or in histones. 3. Relative motion of helices in hinges. These actions are likely in such enzymes as kinases and P-450 cytochromes. 4. Relative motion of helices within domains (relative to other helices or sheets) in mechanical devices (triggers) e.g. in calmodulin. 5. General motion in random proteins. Examples extend from rubber-like proteins (entropy sensors), some glycoproteins, to proteins carrying peptide hormones to be generated only after hydrolysis. 6. Order----disorder transitions locally as in osteocalcin and metallothionine. 7. Swinging arm motions associated with special sequences such as (Ala-Pro)n. 8. Of great interest is the power of NMR to look at proteins which are relatively large, up to 50 kDa proteins, and to isolate certain zones of interest. This needs careful temperature dependent studies and analysis of separated domains [72] as well as the use of a great variety of pulse sequences [15] and of nuclei other than protons. 9. In this article I have illustrated the different possibilities using work in my own group. This is done to lessen the burden of extensive review. I fully realise that the range of examples is now large. I would stress though that the production of the necessary technology was the endeavour of several of us within the Oxford Enzyme Group from 1970 to 1985, i.e. from 270-600 MHz Fourier-transform NMR spectroscopy. 10. While all of these features have been demonstrated by NMR methods there are parallel developments both using X-ray diffraction methods and theoretical approaches. All these procedures are changing the view of protein structure to one which incorporates dynamics all the way from conventional vibronic/rotational coupling to the disordered motions characteristic of random polymers. It is the understanding of dynamics that leads to an appreciation of function.

摘要

对结构内动力学的核磁共振研究表明,需要一种全新的方法来研究蛋白质结构及其与功能的关系。这种方法需要详细考虑以下几点:1. 基团和小片段的局部运动,以实现快速识别和匹配。这种运动涉及开启/关闭速率以及结合。这些观察结果会影响表面/表面识别,例如抗原/抗体以及底物与蛋白质之间的识别。2. 稍微大一些的结构域间或N端和C端片段,它们允许重新排列。凝血蛋白或组蛋白中片段的运动就是例证。3. 铰链区螺旋的相对运动。激酶和P - 450细胞色素等酶中可能会发生这些作用。4. 机械装置(触发器)(如钙调蛋白)中结构域内螺旋的相对运动(相对于其他螺旋或片层)。5. 无规蛋白质中的整体运动。例子从类橡胶蛋白(熵传感器)、一些糖蛋白,到仅在水解后才产生肽激素的蛋白质。6. 像骨钙素和金属硫蛋白中那样的局部有序 - 无序转变。7. 与特殊序列(如(Ala - Pro)n)相关的摆动臂运动。8. 非常有趣的是,核磁共振能够研究相对较大的蛋白质,高达50 kDa的蛋白质,并分离出特定的感兴趣区域。这需要仔细的温度依赖性研究和对分离结构域的分析[72],以及使用各种各样的脉冲序列[15]和除质子以外的原子核。9. 在本文中,我用我自己团队的工作说明了不同的可能性。这样做是为了减轻广泛综述的负担。我完全意识到现在例子的范围很广。不过我要强调的是,必要技术的产生是我们牛津酶学团队中几个人在1970年至1985年期间努力的结果,即从270 - 600 MHz傅里叶变换核磁共振光谱技术。10. 虽然所有这些特征都已通过核磁共振方法得到证明,但使用X射线衍射方法和理论方法也有并行的进展。所有这些程序都在将蛋白质结构的观点转变为一种从传统的振动/旋转耦合一直到无规聚合物特征性的无序运动都包含动力学的观点。正是对动力学的理解才导致对功能的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验