Zhang Zisheng, Parhi Keshab K
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6578-81. doi: 10.1109/EMBC.2015.7319900.
This paper presents a novel patient-specific algorithm for detection of seizures in epileptic patients with low hardware complexity and low power consumption. In the proposed approach, we first compute the spectrogram of the input fragmented EEG signals from three or four electrodes. Each fragmented data clip is one second in duration. Spectral powers and spectral ratios are then extracted as features. The features are then subjected to feature selection using regression tree. The selected features are then subjected to a polynomial support vector machine (SVM) classifier with degree of 2. The algorithm is tested using the intra-cranial EEG (iEEG) from the UPenn and Mayo Clinic's Seizure Detection Challenge database. It is shown that the proposed algorithm can achieve a sensitivity of 100.0%, an average area under curve (AUC) of 0.9818, a mean detection horizon of 5.8 seconds, and a specificity of 99.9% on using half of the training data for classification. The proposed approach also achieved a mean AUC of seizure detection and early seizure detection of 0.9136 on the testing data.
本文提出了一种针对癫痫患者的新型特定患者算法,该算法具有低硬件复杂度和低功耗的特点,用于检测癫痫发作。在所提出的方法中,我们首先计算来自三或四个电极的输入分段脑电图(EEG)信号的频谱图。每个分段数据片段的持续时间为一秒。然后提取频谱功率和频谱比作为特征。接着使用回归树对这些特征进行特征选择。随后,将所选特征输入到度数为2的多项式支持向量机(SVM)分类器中。该算法使用来自宾夕法尼亚大学和梅奥诊所癫痫发作检测挑战数据库的颅内脑电图(iEEG)进行测试。结果表明,在所提出的算法中,使用一半的训练数据进行分类时,可实现100.0%的灵敏度、0.9818的平均曲线下面积(AUC)、5.8秒的平均检测提前期以及99.9%的特异性。在所提出的方法中,在测试数据上癫痫发作检测和早期癫痫发作检测的平均AUC也达到了0.9136。