Parhi Keshab K
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4443-6. doi: 10.1109/EMBC.2014.6944610.
This paper presents a novel patient-specific algorithm for detection of seizures in epileptic patients from a single-channel intra-cranial electroencephaolograph (iEEG) recording. Instead of extracting features from the EEG signal, first the EEG signal is filtered by a prediction error filter (PEF) to compute a prediction error signal. A two-level wavelet decomposition of the prediction error signal leads to two detail signals and one approximate signal. Eight features are extracted every one second using a 2-second window with a 50% overlap. These features are input to two different types of classifiers: a linear support vector machine (SVM) classifier and an AdaBoost classifier. The algorithm is tested using the intra-cranial EEG (iEEG) from the Freiburg database. It is shown that the proposed algorithm can achieve a sensitivity of 95.0% and an average false positive rate (FPR) of 0.124 per hour, using the linear SVM classifier. The AdaBoost classifier achieves a sensitivity of 98.75% and an average FPR of 0.075 per hour. These results are obtained with leave-one-out cross-validation. In addition, for 13 out of 18 patients, the AdaBoost classifier requires only one feature, while it requires 4 features for the remaining 5 patients.
本文提出了一种新颖的针对癫痫患者的特定算法,用于从单通道颅内脑电图(iEEG)记录中检测癫痫发作。该算法并非从脑电图信号中提取特征,而是首先通过预测误差滤波器(PEF)对脑电图信号进行滤波,以计算预测误差信号。对预测误差信号进行两级小波分解会得到两个细节信号和一个近似信号。使用一个2秒的窗口,重叠率为50%,每秒提取八个特征。这些特征被输入到两种不同类型的分类器中:线性支持向量机(SVM)分类器和AdaBoost分类器。该算法使用来自弗莱堡数据库的颅内脑电图(iEEG)进行测试。结果表明,使用线性SVM分类器时,所提出的算法可以达到95.0%的灵敏度和每小时0.124的平均误报率(FPR)。AdaBoost分类器的灵敏度达到98.75%,平均FPR为每小时0.075。这些结果是通过留一法交叉验证获得的。此外,对于18名患者中的13名,AdaBoost分类器仅需要一个特征,而其余5名患者则需要4个特征。