Makram Abram W, Rushdi Muhammad A, Khalifa Ayman M, El-Wakad Mohamed T
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7921-4. doi: 10.1109/EMBC.2015.7320229.
Tagged Magnetic Resonance Imaging (tMRI) is considered to be the gold standard for quantitative assessment of the cardiac local functions. However, the tagging patterns and low myocardium-to-blood-pool contrast of tagged images bring great challenges to cardiac image processing and analysis tasks such as myocardium segmentation and tracking. Hence, there has been growing interest in techniques for removing tagging lines. In this work, a method for removing tagging patterns in tagged MR images using a coupled dictionary learning (CDL) model is proposed. In this model, identical sparse representations are assumed for image patches in the tagged MRI and corresponding cine MRI image spaces. First, we learn a dictionary for the tagged MRI image space. Then, we compute a dictionary for the cine MRI image space so that corresponding tagged and cine patches have the same sparse codes in terms of their respective dictionaries. Finally, in order to produce the de-tagged (cine version) of a test tagged image, the sparse codes of the tagged patches and the trained cine dictionary are used together to construct the de-tagged patches. We have tested this tag removal method on a dataset of tagged cardiac MR images. Our experimental results compared favorably with a recently proposed tag removal method that removes tags in the frequency domain using an optimal band-stop filter of harmonic peaks.
标记磁共振成像(tMRI)被认为是心脏局部功能定量评估的金标准。然而,标记图像的标记模式和低心肌与血池对比度给心肌分割和跟踪等心脏图像处理和分析任务带来了巨大挑战。因此,去除标记线的技术受到越来越多的关注。在这项工作中,提出了一种使用耦合字典学习(CDL)模型去除标记磁共振图像中标记模式的方法。在该模型中,假设标记MRI图像空间和相应的电影MRI图像空间中的图像块具有相同的稀疏表示。首先,我们为标记MRI图像空间学习一个字典。然后,我们计算电影MRI图像空间的字典,以便相应的标记和电影块在各自的字典方面具有相同的稀疏码。最后,为了生成测试标记图像的去标记(电影版本),标记块的稀疏码和训练好的电影字典一起用于构建去标记块。我们在标记心脏磁共振图像数据集上测试了这种标记去除方法。我们的实验结果与最近提出的一种使用谐波峰值的最优带阻滤波器在频域中去除标记的标记去除方法相比具有优势。