Suppr超能文献

一种用于癌症成像的蛋白酶激活荧光探针的小鼠-人类1期联合临床试验。

A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer.

作者信息

Whitley Melodi Javid, Cardona Diana M, Lazarides Alexander L, Spasojevic Ivan, Ferrer Jorge M, Cahill Joan, Lee Chang-Lung, Snuderl Matija, Blazer Dan G, Hwang E Shelley, Greenup Rachel A, Mosca Paul J, Mito Jeffrey K, Cuneo Kyle C, Larrier Nicole A, O'Reilly Erin K, Riedel Richard F, Eward William C, Strasfeld David B, Fukumura Dai, Jain Rakesh K, Lee W David, Griffith Linda G, Bawendi Moungi G, Kirsch David G, Brigman Brian E

机构信息

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA. Medical Science Training Program, Duke University Medical Center, Durham, NC 27710, USA.

Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Sci Transl Med. 2016 Jan 6;8(320):320ra4. doi: 10.1126/scitranslmed.aad0293.

Abstract

Local recurrence is a common cause of treatment failure for patients with solid tumors. Intraoperative detection of microscopic residual cancer in the tumor bed could be used to decrease the risk of a positive surgical margin, reduce rates of reexcision, and tailor adjuvant therapy. We used a protease-activated fluorescent imaging probe, LUM015, to detect cancer in vivo in a mouse model of soft tissue sarcoma (STS) and ex vivo in a first-in-human phase 1 clinical trial. In mice, intravenous injection of LUM015 labeled tumor cells, and residual fluorescence within the tumor bed predicted local recurrence. In 15 patients with STS or breast cancer, intravenous injection of LUM015 before surgery was well tolerated. Imaging of resected human tissues showed that fluorescence from tumor was significantly higher than fluorescence from normal tissues. LUM015 biodistribution, pharmacokinetic profiles, and metabolism were similar in mouse and human subjects. Tissue concentrations of LUM015 and its metabolites, including fluorescently labeled lysine, demonstrated that LUM015 is selectively distributed to tumors where it is activated by proteases. Experiments in mice with a constitutively active PEGylated fluorescent imaging probe support a model where tumor-selective probe distribution is a determinant of increased fluorescence in cancer. These co-clinical studies suggest that the tumor specificity of protease-activated imaging probes, such as LUM015, is dependent on both biodistribution and enzyme activity. Our first-in-human data support future clinical trials of LUM015 and other protease-sensitive probes.

摘要

局部复发是实体瘤患者治疗失败的常见原因。术中检测肿瘤床中的微小残留癌可用于降低手术切缘阳性的风险、降低再次切除率并调整辅助治疗方案。我们使用了一种蛋白酶激活的荧光成像探针LUM015,在软组织肉瘤(STS)小鼠模型中进行体内癌症检测,并在一项首例人体1期临床试验中进行体外检测。在小鼠中,静脉注射LUM015可标记肿瘤细胞,肿瘤床内的残留荧光可预测局部复发。在15例STS或乳腺癌患者中,术前静脉注射LUM015耐受性良好。对切除的人体组织进行成像显示,肿瘤发出的荧光明显高于正常组织发出的荧光。LUM015在小鼠和人类受试者中的生物分布、药代动力学特征及代谢情况相似。LUM015及其代谢产物(包括荧光标记的赖氨酸)的组织浓度表明,LUM015选择性地分布于肿瘤中,并在肿瘤中被蛋白酶激活。使用一种组成型活性聚乙二醇化荧光成像探针在小鼠身上进行的实验支持了一种模型,即肿瘤选择性探针分布是癌症中荧光增加的一个决定因素。这些联合临床研究表明,蛋白酶激活成像探针(如LUM015)的肿瘤特异性取决于生物分布和酶活性。我们的首例人体数据为LUM015和其他蛋白酶敏感探针的未来临床试验提供了支持。

相似文献

1
A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer.
Sci Transl Med. 2016 Jan 6;8(320):320ra4. doi: 10.1126/scitranslmed.aad0293.
6
Optical imaging with a novel cathepsin-activatable probe for enhanced detection of colorectal cancer.
Am J Nucl Med Mol Imaging. 2019 Oct 15;9(5):230-242. eCollection 2019.
7
Imaging primary mouse sarcomas after radiation therapy using cathepsin-activatable fluorescent imaging agents.
Int J Radiat Oncol Biol Phys. 2013 May 1;86(1):136-42. doi: 10.1016/j.ijrobp.2012.12.007. Epub 2013 Feb 4.
8
Tailoring Adjuvant Radiation Therapy by Intraoperative Imaging to Detect Residual Cancer.
Semin Radiat Oncol. 2015 Oct;25(4):313-21. doi: 10.1016/j.semradonc.2015.05.005. Epub 2015 May 14.
9
A Fluorescence-Guided Laser Ablation System for Removal of Residual Cancer in a Mouse Model of Soft Tissue Sarcoma.
Theranostics. 2016 Jan 1;6(2):155-66. doi: 10.7150/thno.13536. eCollection 2016.
10
Protease-Activated Fluorescent Probe Shows Promise as a Cancer Imaging Device.
JAMA. 2016;315(12):1217-8. doi: 10.1001/jama.2016.0510.

引用本文的文献

1
Brightening New Horizons: Luminescent Transition Metal Complexes in Optical Imaging and Theranostic Applications.
ACS Cent Sci. 2025 Jul 16;11(8):1289-1305. doi: 10.1021/acscentsci.5c00975. eCollection 2025 Aug 27.
2
Macrocyclic Phage Display for Identification of Selective Protease Substrates.
J Am Chem Soc. 2025 Jul 30;147(30):26307-26318. doi: 10.1021/jacs.5c04424. Epub 2025 Jul 18.
3
Agents for Fluorescence-Guided Glioblastoma Surgery.
Pharmaceutics. 2025 May 11;17(5):637. doi: 10.3390/pharmaceutics17050637.
5
Macrocyclic phage display for identification of selective protease substrates.
bioRxiv. 2025 Mar 15:2025.03.13.643185. doi: 10.1101/2025.03.13.643185.
6
2024 FDA TIDES (Peptides and Oligonucleotides) Harvest.
Pharmaceuticals (Basel). 2025 Feb 20;18(3):291. doi: 10.3390/ph18030291.
8
Advances and challenges in precision imaging.
Lancet Oncol. 2025 Jan;26(1):e34-e45. doi: 10.1016/S1470-2045(24)00395-4.
9
AND-gated protease-activated nanosensors for programmable detection of anti-tumour immunity.
Nat Nanotechnol. 2025 Mar;20(3):441-450. doi: 10.1038/s41565-024-01834-8. Epub 2025 Jan 3.
10
First-in-Human Study of ABY-029, a Novel Fluorescent Peptide that Targets EGFR, Applied to Soft-Tissue Sarcomas.
Mol Cancer Ther. 2025 May 2;24(5):784-795. doi: 10.1158/1535-7163.MCT-24-0378.

本文引用的文献

1
A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy.
Theranostics. 2015 May 23;5(9):946-60. doi: 10.7150/thno.11974. eCollection 2015.
2
Blockade of MMP14 activity in murine breast carcinomas: implications for macrophages, vessels, and radiotherapy.
J Natl Cancer Inst. 2015 Feb 20;107(4). doi: 10.1093/jnci/djv017. Print 2015 Apr.
3
Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging.
Sci Transl Med. 2015 Jan 21;7(271):271ra7. doi: 10.1126/scitranslmed.3010633.
4
Detection of intestinal cancer by local, topical application of a quenched fluorescence probe for cysteine cathepsins.
Chem Biol. 2015 Jan 22;22(1):148-58. doi: 10.1016/j.chembiol.2014.11.008. Epub 2015 Jan 8.
5
Prospective trial with optical molecular imaging for percutaneous interventions in focal hepatic lesions.
Radiology. 2015 Mar;274(3):917-26. doi: 10.1148/radiol.14141308. Epub 2014 Oct 10.
6
MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes.
J Clin Invest. 2014 Oct;124(10):4305-19. doi: 10.1172/JCI77116. Epub 2014 Sep 2.
7
Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and Methylene Blue.
Eur J Surg Oncol. 2014 Jul;40(7):850-8. doi: 10.1016/j.ejso.2014.02.225. Epub 2014 Feb 22.
8
In vivo assessment of HER2 receptor density in HER2-positive tumors by near-infrared imaging, using repeated injections of the fluorescent probe.
Technol Cancer Res Treat. 2014 Oct;13(5):427-34. doi: 10.7785/tcrtexpress.2013.600265. Epub 2013 Aug 31.
9
Imaging primary mouse sarcomas after radiation therapy using cathepsin-activatable fluorescent imaging agents.
Int J Radiat Oncol Biol Phys. 2013 May 1;86(1):136-42. doi: 10.1016/j.ijrobp.2012.12.007. Epub 2013 Feb 4.
10
Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy.
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17561-6. doi: 10.1073/pnas.1215397109. Epub 2012 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验