Kensler Thomas W, Spira Avrum, Garber Judy E, Szabo Eva, Lee J Jack, Dong Zigang, Dannenberg Andrew J, Hait William N, Blackburn Elizabeth, Davidson Nancy E, Foti Margaret, Lippman Scott M
University of Pittsburgh, Pittsburgh, Pennsylvania and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
Boston University, Boston, Massachusetts.
Cancer Prev Res (Phila). 2016 Jan;9(1):2-10. doi: 10.1158/1940-6207.CAPR-15-0406.
We have entered a transformative period in cancer prevention (including early detection). Remarkable progress in precision medicine and immune-oncology, driven by extraordinary recent advances in genome-wide sequencing, big-data analytics, blood-based technologies, and deep understanding of the tumor immune microenvironment (TME), has provided unprecedented possibilities to study the biology of premalignancy. The pace of research and discovery in precision medicine and immunoprevention has been astonishing and includes the following clinical firsts reported in 2015: driver mutations detected in circulating cell-free DNA in patients with premalignant lesions (lung); clonal hematopoiesis shown to be a premalignant state; molecular selection in chemoprevention randomized controlled trial (RCT; oral); striking efficacy in RCT of combination chemoprevention targeting signaling pathway alterations mechanistically linked to germline mutation (duodenum); molecular markers for early detection validated for lung cancer and showing promise for pancreatic, liver, and ovarian cancer. Identification of HPV as the essential cause of a major global cancer burden, including HPV16 as the single driver of an epidemic of oropharyngeal cancer in men, provides unique opportunities for the dissemination and implementation of public health interventions. Important to immunoprevention beyond viral vaccines, genetic drivers of premalignant progression were associated with increasing immunosuppressive TME; and Kras vaccine efficacy in pancreas genetically engineered mouse (GEM) model required an inhibitory adjuvant (Treg depletion). In addition to developing new (e.g., epigenetic) TME regulators, recent mechanistic studies of repurposed drugs (aspirin, metformin, and tamoxifen) have identified potent immune activity. Just as precision medicine and immune-oncology are revolutionizing cancer therapy, these approaches are transforming cancer prevention. Here, we set out a brief agenda for the immediate future of cancer prevention research (including a "Pre-Cancer Genome Atlas" or "PCGA"), which will involve the inter-related fields of precision medicine and immunoprevention - pivotal elements of a broader domain of personalized public health.
我们已经进入了癌症预防(包括早期检测)的变革时期。在全基因组测序、大数据分析、血液检测技术以及对肿瘤免疫微环境(TME)的深入理解等方面取得的显著进展推动了精准医学和免疫肿瘤学的发展,为研究癌前病变的生物学特性提供了前所未有的可能性。精准医学和免疫预防领域的研究与发现步伐惊人,其中包括2015年报道的以下临床首例:在癌前病变(肺癌)患者的循环游离DNA中检测到驱动突变;克隆性造血被证明是一种癌前状态;化学预防随机对照试验(RCT;口服)中的分子选择;针对与种系突变机制相关的信号通路改变进行联合化学预防的RCT显示出显著疗效(十二指肠);用于肺癌早期检测的分子标志物得到验证,并在胰腺癌、肝癌和卵巢癌检测中显示出前景。人乳头瘤病毒(HPV)被确定为全球主要癌症负担的根本原因,其中HPV16是男性口咽癌流行的单一驱动因素,这为公共卫生干预措施的推广和实施提供了独特机会。除了病毒疫苗之外,对免疫预防很重要的是,癌前进展的遗传驱动因素与免疫抑制性TME的增加有关;在胰腺基因工程小鼠(GEM)模型中,Kras疫苗的疗效需要一种抑制性佐剂(Treg耗竭)。除了开发新的(如表观遗传)TME调节剂外,最近对重新利用药物(阿司匹林、二甲双胍和他莫昔芬)的机制研究已经确定了强大的免疫活性。正如精准医学和免疫肿瘤学正在彻底改变癌症治疗一样,这些方法也正在改变癌症预防。在此,我们为癌症预防研究的近期未来制定了一个简要议程(包括一个“癌前基因组图谱”或“PCGA”),这将涉及精准医学和免疫预防这两个相互关联的领域——个性化公共卫生更广泛领域的关键要素。