功能回归的交互模型

Interaction Models for Functional Regression.

作者信息

Usset Joseph, Staicu Ana-Maria, Maity Arnab

机构信息

Kansas University Department of Biostatistics, Kansas City, KS, USA.

North Carolina State Department of Statistics, Raleigh, NC, USA.

出版信息

Comput Stat Data Anal. 2016 Feb 1;94:317-329. doi: 10.1016/j.csda.2015.08.020.

Abstract

A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data.

摘要

提出了一种具有标量响应和多个函数预测变量的函数回归模型,该模型除了包含主效应外,还考虑了双向交互作用。所提出的估计程序使用惩罚回归样条对主效应进行建模,并通过张量积基对交互效应进行建模。还介绍了对广义线性模型以及在稀疏网格上观测的数据或带有测量误差的数据的扩展。描述了用于函数交互效应的假设检验程序。所提出的方法可以通过现有软件轻松实现。数值研究表明,在存在交互作用的情况下拟合加法模型会导致估计性能不佳和预测能力丧失,而在实际上不存在交互作用的情况下拟合交互模型只会导致可忽略不计的损失。该方法在AneuRisk65研究数据上进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索