Suppr超能文献

广义泛函线性模型中的变量选择

Variable Selection in Generalized Functional Linear Models.

作者信息

Gertheiss J, Maity A, Staicu A-M

机构信息

Department of Animal Sciences, Georg-August-Universität Göttingen, Germany.

Department of Statistics, North Carolina State University, USA.

出版信息

Stat. 2013;2(1):86-103. doi: 10.1002/sta4.20.

Abstract

Modern research data, where a large number of functional predictors is collected on few subjects are becoming increasingly common. In this paper we propose a variable selection technique, when the predictors are functional and the response is scalar. Our approach is based on adopting a generalized functional linear model framework and using a penalized likelihood method that simultaneously controls the sparsity of the model and the smoothness of the corresponding coefficient functions by adequate penalization. The methodology is characterized by high predictive accuracy, and yields interpretable models, while retaining computational efficiency. The proposed method is investigated numerically in finite samples, and applied to a diffusion tensor imaging tractography data set and a chemometric data set.

摘要

现代研究数据中,在少数受试者身上收集大量功能预测变量的情况越来越普遍。在本文中,我们提出了一种变量选择技术,适用于预测变量为函数形式且响应变量为标量的情况。我们的方法基于采用广义功能线性模型框架,并使用惩罚似然法,通过适当的惩罚同时控制模型的稀疏性和相应系数函数的平滑性。该方法具有高预测准确性的特点,能产生可解释的模型,同时保持计算效率。我们在有限样本中对所提出的方法进行了数值研究,并将其应用于一个扩散张量成像纤维束追踪数据集和一个化学计量数据集。

相似文献

1
Variable Selection in Generalized Functional Linear Models.
Stat. 2013;2(1):86-103. doi: 10.1002/sta4.20.
2
Consistent Group Identification and Variable Selection in Regression with Correlated Predictors.
J Comput Graph Stat. 2013 Apr 1;22(2):319-340. doi: 10.1080/15533174.2012.707849.
3
Wavelet-Based Scalar-on-Function Finite Mixture Regression Models.
Comput Stat Data Anal. 2016 Jan 1;93:86-96. doi: 10.1016/j.csda.2014.11.017. Epub 2014 Dec 17.
5
Variable selection for binary spatial regression: Penalized quasi-likelihood approach.
Biometrics. 2016 Dec;72(4):1164-1172. doi: 10.1111/biom.12525. Epub 2016 Apr 8.
6
Order selection and sparsity in latent variable models via the ordered factor LASSO.
Biometrics. 2018 Dec;74(4):1311-1319. doi: 10.1111/biom.12888. Epub 2018 May 11.
7
Penalized joint generalized estimating equations for longitudinal binary data.
Biom J. 2022 Jan;64(1):57-73. doi: 10.1002/bimj.202000336. Epub 2021 Sep 29.
8
Variable selection with P-splines in functional linear regression: Application in graft-versus-host disease.
Biom J. 2020 Nov;62(7):1670-1686. doi: 10.1002/bimj.201900189. Epub 2020 Jun 10.
9
Wavelet-based LASSO in functional linear regression.
J Comput Graph Stat. 2012 Jul 1;21(3):600-617. doi: 10.1080/10618600.2012.679241.
10
On the robustness of the adaptive lasso to model misspecification.
Biometrika. 2012 Sep;99(3):717-731. doi: 10.1093/biomet/ass027. Epub 2012 Jul 11.

引用本文的文献

1
Functional Concurrent Regression Mixture Models Using Spiked Ewens-Pitman Attraction Priors.
Bayesian Anal. 2024 Dec;19(4):1067-1095. doi: 10.1214/23-ba1380. Epub 2023 May 2.
2
Constructing a polygenic risk score for childhood obesity using functional data analysis.
Econom Stat. 2023 Jan;25:66-86. doi: 10.1016/j.ecosta.2021.10.014. Epub 2021 Nov 11.
4
Inference in Functional Linear Quantile Regression.
J Multivar Anal. 2022 Jul;190. doi: 10.1016/j.jmva.2022.104985. Epub 2022 Mar 11.
5
Understanding rice growth-promoting potential of spp. isolated from long-term organic farming soil in India through a supervised learning approach.
Curr Res Microb Sci. 2021 Apr 29;2:100035. doi: 10.1016/j.crmicr.2021.100035. eCollection 2021 Dec.
6
Covariate-adjusted region-referenced generalized functional linear model for EEG data.
Stat Med. 2019 Dec 30;38(30):5587-5602. doi: 10.1002/sim.8384. Epub 2019 Oct 28.
7
Bayesian Semiparametric Functional Mixed Models for Serially Correlated Functional Data, with Application to Glaucoma Data.
J Am Stat Assoc. 2019;114(526):495-513. doi: 10.1080/01621459.2018.1476242. Epub 2018 Aug 15.
8
Model-free feature screening for categorical outcomes: Nonlinear effect detection and false discovery rate control.
PLoS One. 2019 May 31;14(5):e0217463. doi: 10.1371/journal.pone.0217463. eCollection 2019.
9
Constructing treatment decision rules based on scalar and functional predictors when moderators of treatment effect are unknown.
J R Stat Soc Ser C Appl Stat. 2018 Nov;67(5):1331-1356. doi: 10.1111/rssc.12278. Epub 2018 Apr 16.
10
Feature selection for high-dimensional temporal data.
BMC Bioinformatics. 2018 Jan 23;19(1):17. doi: 10.1186/s12859-018-2023-7.

本文引用的文献

1
Classical Testing in Functional Linear Models.
J Nonparametr Stat. 2016;28(4):813-838. doi: 10.1080/10485252.2016.1231806. Epub 2016 Aug 20.
2
Functional Generalized Additive Models.
J Comput Graph Stat. 2014;23(1):249-269. doi: 10.1080/10618600.2012.729985.
3
Longitudinal scalar-on-functions regression with application to tractography data.
Biostatistics. 2013 Jul;14(3):447-61. doi: 10.1093/biostatistics/kxs051. Epub 2013 Jan 5.
4
Longitudinal Penalized Functional Regression for Cognitive Outcomes on Neuronal Tract Measurements.
J R Stat Soc Ser C Appl Stat. 2012 May;61(3):453-469. doi: 10.1111/j.1467-9876.2011.01031.x. Epub 2012 Jan 5.
5
Penalized Functional Regression.
J Comput Graph Stat. 2011 Dec 1;20(4):830-851. doi: 10.1198/jcgs.2010.10007.
6
Modeling functional data with spatially heterogeneous shape characteristics.
Biometrics. 2012 Jun;68(2):331-43. doi: 10.1111/j.1541-0420.2011.01669.x. Epub 2011 Nov 3.
7
Longitudinal functional principal component analysis.
Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.
8
Penalized functional regression analysis of white-matter tract profiles in multiple sclerosis.
Neuroimage. 2011 Jul 15;57(2):431-9. doi: 10.1016/j.neuroimage.2011.04.044. Epub 2011 Apr 30.
9
MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS.
Ann Appl Stat. 2009 Mar 1;3(1):458-488. doi: 10.1214/08-AOAS206SUPP.
10
Multiparametric magnetic resonance imaging analysis of the corticospinal tract in multiple sclerosis.
Neuroimage. 2007 Nov 1;38(2):271-9. doi: 10.1016/j.neuroimage.2007.07.049. Epub 2007 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验