Gertheiss J, Maity A, Staicu A-M
Department of Animal Sciences, Georg-August-Universität Göttingen, Germany.
Department of Statistics, North Carolina State University, USA.
Stat. 2013;2(1):86-103. doi: 10.1002/sta4.20.
Modern research data, where a large number of functional predictors is collected on few subjects are becoming increasingly common. In this paper we propose a variable selection technique, when the predictors are functional and the response is scalar. Our approach is based on adopting a generalized functional linear model framework and using a penalized likelihood method that simultaneously controls the sparsity of the model and the smoothness of the corresponding coefficient functions by adequate penalization. The methodology is characterized by high predictive accuracy, and yields interpretable models, while retaining computational efficiency. The proposed method is investigated numerically in finite samples, and applied to a diffusion tensor imaging tractography data set and a chemometric data set.
现代研究数据中,在少数受试者身上收集大量功能预测变量的情况越来越普遍。在本文中,我们提出了一种变量选择技术,适用于预测变量为函数形式且响应变量为标量的情况。我们的方法基于采用广义功能线性模型框架,并使用惩罚似然法,通过适当的惩罚同时控制模型的稀疏性和相应系数函数的平滑性。该方法具有高预测准确性的特点,能产生可解释的模型,同时保持计算效率。我们在有限样本中对所提出的方法进行了数值研究,并将其应用于一个扩散张量成像纤维束追踪数据集和一个化学计量数据集。