Suppr超能文献

有效片段势方法中R(-7)色散相互作用梯度的推导与实现

Derivation and Implementation of the Gradient of the R(-7) Dispersion Interaction in the Effective Fragment Potential Method.

作者信息

Guidez Emilie B, Xu Peng, Gordon Mark S

机构信息

Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States.

出版信息

J Phys Chem A. 2016 Feb 4;120(4):639-47. doi: 10.1021/acs.jpca.5b11042. Epub 2016 Jan 25.

Abstract

The dispersion interaction energy may be expressed as a sum over R(-n) terms, with n ≥ 6. Most implementations of the dispersion interaction in model potentials are terminated at n = 6. Those implementations that do include higher order contributions commonly only include even power terms, despite the fact that odd power terms can be important. Because the effective fragment potential (EFP) method contains no empirically fitted parameters, the EFP method provides a useful vehicle for examining the importance of the leading R(-7) odd power term in the dispersion expansion. To fully evaluate the importance of the R(-7) contribution to the dispersion energy, it is important to have analytic energy first derivatives for all terms. In the present work, the gradients of the term E7 ∼ R(-7) are derived analytically, implemented in the GAMESS software package, and evaluated relative to other terms in the dispersion expansion and relative to the total EFP interaction energy. Periodic boundary conditions in the minimum image convention are also implemented. A more accurate dispersion energy contribution can now be obtained during molecular dynamics simulations.

摘要

色散相互作用能可以表示为R(-n)项的总和,其中n≥6。模型势中色散相互作用的大多数实现都在n = 6处终止。那些确实包含高阶贡献的实现通常只包括偶次幂项,尽管奇次幂项可能很重要。由于有效片段势(EFP)方法不包含经验拟合参数,因此EFP方法为研究色散展开中领先的R(-7)奇次幂项的重要性提供了一个有用的工具。为了全面评估R(-7)对色散能的贡献的重要性,对于所有项都具有解析能量一阶导数是很重要的。在本工作中,对项E7 ∼ R(-7)的梯度进行了解析推导,在GAMESS软件包中实现,并相对于色散展开中的其他项以及相对于总EFP相互作用能进行了评估。还实现了最小镜像约定中的周期性边界条件。现在在分子动力学模拟期间可以获得更准确的色散能贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验