Ruohola H, Kabcenell A K, Ferro-Novick S
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510.
Methods Cell Biol. 1989;31:143-54. doi: 10.1016/s0091-679x(08)61606-4.
We have developed a highly efficient in vitro-transport assay that couples translocation across the ER membrane and transport to the Golgi complex using the secreted pheromone alpha-factor as a marker protein. Radiolabeled prepro-alpha-factor of high specific radioactivity is obtained by in vitro-translating this protein in a yeast lysate. Prepro-alpha-factor synthesized in vitro is then translocated directly into microsomes or the ER of permeabilized yeast cells. Conversion of the 26-kDa ER form of pro-alpha-factor to the high molecular weight Golgi form is dependent on the presence of ATP and soluble and membrane-bound factors. Differential centrifugation and fractionation on a sucrose gradient have shown that the ER and Golgi forms of alpha-factor are enriched in separate compartments after the transport reaction. These and other findings (see Ruohola et al., 1988, for a more complete discussion) indicate that conversion to the high molecular weight form of alpha-factor is the result of authentic intercompartmental transport. Permeabilized mammalian cells have been used to reconstitute transport from the ER to the Golgi complex. In these systems (Becker et al., 1987; Simons and Virta, 1987), a viral membrane glycoprotein protein (vesicular stomatitis virus G protein) is used as the marker protein. This protein is radiolabeled with [35S]methionine during virus infection, either before or after the cells are permeabilized. Radiolabeled G protein, residing in the ER, is then transported to the Golgi complex in the presence of an ATP-regenerating system. In the mammalian system the donor and acceptor compartments are retained within the permeabilized cells (Simons and Virta, 1987); however, on occasion the addition of an exogenous acceptor compartment is required (Beckers et al., 1987). The assay we developed (Ruohola et al., 1988) differs from the mammalian assay (Beckers et al., 1987) in that we introduce radiolabeled marker protein into the ER in vitro during translocation rather than during virus infection. In addition, in our assay the acceptor Golgi compartment is always provided exogenously to the permeabilized cells. Therefore, if acceptor membranes are present in the PYC, they are not utilized. Because the permeabilized cells and the S3 fraction are prepared differently, the conditions used to prepare the cells may lead to inactivation or loss of the acceptor compartment. The in vitro assay will enable us to purify components involved in transporting proteins from the lumen of the ER to the Golgi complex. Antibody prepared to purified components can be used to clone the genes that code for these proteins.(ABSTRACT TRUNCATED AT 400 WORDS)
我们开发了一种高效的体外转运测定法,该方法利用分泌的信息素α因子作为标记蛋白,将跨内质网(ER)膜的转运与向高尔基体复合体的转运耦合起来。通过在酵母裂解物中体外翻译该蛋白,可获得具有高比放射性的放射性标记前体α因子。体外合成的前体α因子随后直接转运到微粒体或通透酵母细胞的内质网中。26 kDa的内质网形式的前体α因子向高分子量高尔基体形式的转化依赖于ATP以及可溶性和膜结合因子的存在。差速离心和蔗糖梯度分级分离表明,在转运反应后,α因子的内质网和高尔基体形式分别富集在不同的区室中。这些以及其他发现(更完整的讨论见Ruohola等人,1988年)表明,转化为α因子的高分子量形式是真正的区室间转运的结果。通透的哺乳动物细胞已被用于重建从内质网到高尔基体复合体的转运。在这些系统中(Becker等人,1987年;Simons和Virta,1987年),一种病毒膜糖蛋白(水泡性口炎病毒G蛋白)被用作标记蛋白。在病毒感染期间,无论是在细胞通透之前还是之后,该蛋白都用[35S]甲硫氨酸进行放射性标记。位于内质网中的放射性标记G蛋白随后在ATP再生系统存在的情况下被转运到高尔基体复合体。在哺乳动物系统中,供体和受体区室保留在通透细胞内(Simons和Virta,1987年);然而,有时需要添加外源受体区室(Beckers等人,1987年)。我们开发的测定法(Ruohola等人,1988年)与哺乳动物测定法(Beckers等人,1987年)的不同之处在于,我们在转运过程中在体外将放射性标记的标记蛋白引入内质网,而不是在病毒感染期间。此外,在我们的测定法中,受体高尔基体区室总是外源提供给通透细胞。因此,如果酵母原生质球(PYC)中存在受体膜,则不会被利用。由于通透细胞和S3组分的制备方式不同,用于制备细胞的条件可能导致受体区室失活或丢失。体外测定法将使我们能够纯化参与将蛋白质从内质网腔转运到高尔基体复合体的组分。针对纯化组分制备的抗体可用于克隆编码这些蛋白质的基因。(摘要截于400字)