Walworth N C, Goud B, Ruohola H, Novick P J
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510.
Methods Cell Biol. 1989;31:335-56. doi: 10.1016/s0091-679x(08)61618-0.
In summary, organelles of the secretory pathway can be effectively separated from one another using differential centrifugation followed by sucrose density gradient fractionation of wild-type or vesicle-accumulating mutant yeast cells. Up to 10-fold enrichment of the plasma membrane fraction is obtained, and resolution of the peak fractions of several organelles allows one to localize specific proteins to particular components of the pathway. Additionally, a highly purified population of constitutive secretory vesicles can be isolated from the 100,000 g membrane fraction of sec 6-4 cells on a Sephacryl S-1000 column. The success of this procedure is due to the homogeneous size of the vesicles and the high concentration of vesicles accumulated in the sec 6-4 cells. From other laboratories, methods have been described for the isolation of other organelles including the vacuole (Wiemken, 1975), plasma membrane (Tschopp and Schekman, 1983), and nuclei (Mann and Mecke, 1980), as well as an alternative procedure for the purification of secretory vesicles from yeast (Holcomb et al., 1987). For the localization of proteins to particular organelles the ability to lyse cells osmotically is an important improvement over the glass bead lysis procedure. The shear forces generated during glass bead lysis could potentially remove proteins from the surface of organelles that otherwise would be membrane-attached, causing them to appear soluble. Similarly, because the conditions required for stabilizing the association of a protein with a membrane can be quite variable depending on the lysis buffer, confirmation of localization using alternative schemes is prudent. With the advent of such techniques as confocal immunofluorescent microscopy and immunoelectron microscopy, effective methods for confirming localizations are becoming available.
总之,利用差速离心法,随后对野生型或囊泡积累突变型酵母细胞进行蔗糖密度梯度分级分离,可以有效地将分泌途径中的细胞器彼此分离。质膜组分可实现高达10倍的富集,并且对几种细胞器的峰级分进行解析,能够将特定蛋白质定位到该途径的特定组分上。此外,在Sephacryl S - 1000柱上,可以从sec 6 - 4细胞的100,000 g膜组分中分离出高度纯化的组成型分泌囊泡群体。该方法的成功得益于囊泡大小均一以及sec 6 - 4细胞中积累的囊泡浓度高。其他实验室已经描述了分离包括液泡(维姆肯,1975年)、质膜(乔普和谢克曼,1983年)和细胞核(曼和梅克,1980年)在内的其他细胞器的方法,以及从酵母中纯化分泌囊泡的另一种方法(霍尔科姆等人,1987年)。对于将蛋白质定位到特定细胞器而言,与玻璃珠裂解程序相比,渗透压裂解细胞的能力是一项重要改进。玻璃珠裂解过程中产生的剪切力可能会将原本与膜结合的蛋白质从细胞器表面去除,使其看起来可溶。同样,由于稳定蛋白质与膜结合所需的条件可能因裂解缓冲液而异,因此谨慎使用替代方案来确认定位。随着共聚焦免疫荧光显微镜和免疫电子显微镜等技术的出现,用于确认定位的有效方法正变得可行。