Suppr超能文献

用于可充电锂离子电池的具有长循环稳定性的纳米结构MnO/C电极的一步热解合成

One-Step Pyro-Synthesis of a Nanostructured Mn O /C Electrode with Long Cycle Stability for Rechargeable Lithium-Ion Batteries.

作者信息

Alfaruqi Muhammad Hilmy, Gim Jihyeon, Kim Sungjin, Song Jinju, Duong Pham Tung, Jo Jeonggeun, Baboo Joseph Paul, Xiu Zhiliang, Mathew Vinod, Kim Jaekook

机构信息

Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757, South Korea.

出版信息

Chemistry. 2016 Feb;22(6):2039-2045. doi: 10.1002/chem.201504609. Epub 2016 Jan 8.

Abstract

A nanostructured Mn O /C electrode was prepared by a one-step polyol-assisted pyro-synthesis without any post-heat treatments. The as-prepared Mn O /C revealed nanostructured morphology comprised of secondary aggregates formed from carbon-coated primary particles of average diameters ranging between 20 and 40 nm, as evidenced from the electron microscopy studies. The N adsorption studies reveal a hierarchical porous feature in the nanostructured electrode. The nanostructured morphology appears to be related to the present rapid combustion strategy. The nanostructured porous Mn O /C electrode demonstrated impressive electrode properties with reversible capacities of 666 mAh g at a current density of 33 mA g , good capacity retentions (1141 mAh g with 100 % Coulombic efficiencies at the 100 cycle), and rate capabilities (307 and 202 mAh g at 528 and 1056 mA g , respectively) when tested as an anode for lithium-ion battery applications.

摘要

通过一步多元醇辅助热解法制备了一种纳米结构的MnO/C电极,无需任何后续热处理。所制备的MnO/C呈现出纳米结构形态,由平均直径在20至40 nm之间的碳包覆初级颗粒形成的二次聚集体组成,这从电子显微镜研究中得到了证实。N吸附研究揭示了纳米结构电极中的分级多孔特征。纳米结构形态似乎与当前的快速燃烧策略有关。当作为锂离子电池应用的阳极进行测试时,纳米结构多孔MnO/C电极表现出令人印象深刻的电极性能,在33 mA g的电流密度下可逆容量为666 mAh g,良好的容量保持率(在第100次循环时,库仑效率为100%,容量为1141 mAh g)以及倍率性能(在528和1056 mA g时分别为307和202 mAh g)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验