Suppr超能文献

具有非线性协变量和潜在变量的结构方程模型的贝叶斯分析

Bayesian Analysis of Structural Equation Models With Nonlinear Covariates and Latent Variables.

作者信息

Song Xin-Yuan, Lee Sik-Yum

出版信息

Multivariate Behav Res. 2006 Sep 1;41(3):337-65. doi: 10.1207/s15327906mbr4103_4.

Abstract

In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the proposed model. Markov chain Monte Carlo methods for obtaining Bayesian estimates and their standard error estimates, highest posterior density intervals, and a PP p value are developed. Results obtained from two simulation studies are reported to respectively reveal the empirical performance of the proposed Bayesian estimation in analyzing complex nonlinear SEMs, and in analyzing nonlinear SEMs with the normal assumption of the exogenous latent variables violated. The proposed methodology is further illustrated by a real example. Detailed interpretation about the interaction terms is presented.

摘要

在本文中,我们构建了一个非线性结构方程模型(SEM),该模型能够在测量方程中纳入协变量,并在结构方程中纳入协变量和外生潜在变量的非线性项。协变量可以来自连续或离散分布。我们开发了一种贝叶斯方法来分析所提出的模型。还开发了用于获得贝叶斯估计及其标准误差估计、最高后验密度区间和PP p值的马尔可夫链蒙特卡罗方法。报告了两项模拟研究的结果,分别揭示了所提出的贝叶斯估计在分析复杂非线性结构方程模型以及在外生潜在变量的正态假设被违反的情况下分析非线性结构方程模型时的实证性能。通过一个实际例子进一步说明了所提出的方法。给出了关于交互项的详细解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验