Hushur Anwar, Manghnani Murli H, Werheit Helmut, Dera Przemyslaw, Williams Quentin
University of Hawaii, Hawaii Institute of Geophysics and Planetology, Honolulu, HI 96822, USA.
J Phys Condens Matter. 2016 Feb 3;28(4):045403. doi: 10.1088/0953-8984/28/4/045403. Epub 2016 Jan 11.
Single-crystal B4.3C boron carbide is investigated through the pressure-dependence and inter-relation of atomic distances, optical properties and Raman-active phonons up to ~70 GPa. The anomalous pressure evolution of the gap width to higher energies is striking. This is obtained from observations of transparency, which most rapidly increases around 55 GPa. Full visible optical transparency is approached at pressures of >60 GPa indicating that the band gap reaches ~3.5 eV; at high pressure, boron carbide is a wide-gap semiconductor. The reason is that the high concentration of structural defects controlling the electronic properties of boron carbide at ambient conditions initially decreases and finally vanishes at high pressures. The structural parameters and Raman-active phonons indicate a pressure-dependent phase transition in single-crystal (nat)B4.3C boron carbide near 40 GPa, likely related to structural changes in the C-B-C chains, while the basic icosahedral structure appears to be less affected.
通过研究原子间距、光学性质和拉曼活性声子在高达约70吉帕斯卡压力下的压力依赖性及相互关系,对单晶B4.3C碳化硼进行了研究。能隙宽度向更高能量的异常压力演化十分显著。这是通过对透明度的观察得出的,透明度在约55吉帕斯卡时增加最为迅速。在压力大于60吉帕斯卡时接近完全可见光透明度,这表明带隙达到约3.5电子伏特;在高压下,碳化硼是一种宽带隙半导体。原因是在环境条件下控制碳化硼电子性质的高浓度结构缺陷最初会减少,最终在高压下消失。结构参数和拉曼活性声子表明,单晶(天然)B4.3C碳化硼在接近40吉帕斯卡时发生压力依赖性相变,这可能与C-B-C链的结构变化有关,而基本的二十面体结构似乎受影响较小。