Suppr超能文献

一种使用三维空间分布图从心脏RR间期记录中去除伪影的预处理工具。

A preprocessing tool for removing artifact from cardiac RR interval recordings using three-dimensional spatial distribution mapping.

作者信息

Stapelberg Nicolas J C, Neumann David L, Shum David H K, McConnell Harry, Hamilton-Craig Ian

机构信息

School of Applied Psychology and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.

Gold Coast Hospital and Health Service, Southport, Australia.

出版信息

Psychophysiology. 2016 Apr;53(4):482-92. doi: 10.1111/psyp.12598. Epub 2016 Jan 11.

Abstract

Artifact is common in cardiac RR interval data that is recorded for heart rate variability (HRV) analysis. A novel algorithm for artifact detection and interpolation in RR interval data is described. It is based on spatial distribution mapping of RR interval magnitude and relationships to adjacent values in three dimensions. The characteristics of normal physiological RR intervals and artifact intervals were established using 24-h recordings from 20 technician-assessed human cardiac recordings. The algorithm was incorporated into a preprocessing tool and validated using 30 artificial RR (ARR) interval data files, to which known quantities of artifact (0.5%, 1%, 2%, 3%, 5%, 7%, 10%) were added. The impact of preprocessing ARR files with 1% added artifact was also assessed using 10 time domain and frequency domain HRV metrics. The preprocessing tool was also used to preprocess 69 24-h human cardiac recordings. The tool was able to remove artifact from technician-assessed human cardiac recordings (sensitivity 0.84, SD = 0.09, specificity of 1.00, SD = 0.01) and artificial data files. The removal of artifact had a low impact on time domain and frequency domain HRV metrics (ranging from 0% to 2.5% change in values). This novel preprocessing tool can be used with human 24-h cardiac recordings to remove artifact while minimally affecting physiological data and therefore having a low impact on HRV measures of that data.

摘要

在用于心率变异性(HRV)分析而记录的心脏RR间期数据中,伪差很常见。本文描述了一种用于RR间期数据中伪差检测和插值的新算法。它基于RR间期幅度的空间分布映射以及与三维中相邻值的关系。利用来自20份经技术人员评估的人体心脏记录的24小时记录,确定了正常生理RR间期和伪差间期的特征。该算法被纳入一个预处理工具,并使用30个模拟RR(ARR)间期数据文件进行验证,这些文件中添加了已知量的伪差(0.5%、1%、2%、3%、5%、7%、10%)。还使用10个时域和频域HRV指标评估了对添加1%伪差的ARR文件进行预处理的影响。该预处理工具还用于对69份24小时人体心脏记录进行预处理。该工具能够从经技术人员评估的人体心脏记录(灵敏度0.84,标准差=0.09,特异性1.00,标准差=0.01)和人工数据文件中去除伪差。去除伪差对时域和频域HRV指标的影响较小(值的变化范围为0%至2.5%)。这种新型预处理工具可用于人体24小时心脏记录,以去除伪差,同时对生理数据的影响最小,因此对该数据的HRV测量影响较小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验