Suppr超能文献

针对处于不同困倦阶段的驾驶员,比较用于推导心率变异性指标的异常心跳识别和频谱变换策略。

Comparison of outlier heartbeat identification and spectral transformation strategies for deriving heart rate variability indices for drivers at different stages of sleepiness.

作者信息

Forcolin Fabio, Buendia Ruben, Candefjord Stefan, Karlsson Johan, Sjöqvist Bengt Arne, Anund Anna

机构信息

a SAFER Vehicle and Traffic Safety Centre at Chalmers University of Technology , Gothenburg , Sweden.

b Department of Electrical Engineering , Chalmers University of Technology , Gothenburg , Sweden.

出版信息

Traffic Inj Prev. 2018 Feb 28;19(sup1):S112-S119. doi: 10.1080/15389588.2017.1393073.

Abstract

OBJECTIVE

Appropriate preprocessing for detecting and removing outlier heartbeats and spectral transformation is essential for deriving heart rate variability (HRV) indices from cardiac monitoring data with high accuracy. The objective of this study is to evaluate agreement between standard preprocessing methods for cardiac monitoring data used to detect outlier heartbeats and perform spectral transformation, in relation to estimating HRV indices for drivers at different stages of sleepiness.

METHODS

The study analyzed more than 3,500 5-min driving epochs from 76 drivers on a public motorway in Sweden. Electrocardiography (ECG) data were recorded in 3 studies designed to evaluate the physiological differences between awake and sleepy drivers. The Pan-Tompkins algorithm was used for peak detection of heartbeats from ECG data. Two standard methods were used for identifying outlier heartbeats: (1) percentage change (PC), where outliers were defined as interbeat interval deviating >30% from the mean of the 4 previous intervals, and (2) standard deviation (SD), where outliers were defined as interbeat interval deviating >4 SD from the mean interval duration in the current epoch. Three standard methods were used for spectral transformation, which is needed for deriving HRV indices in the frequency domain; these methods were (1) the Fourier transform; (2) an autoregressive model; and (3) the Lomb-Scargle periodogram. The preprocessing methods were compared quantitatively and by assessing agreement between estimations of 13 common HRV indices using Bland-Altman plots and paired Student's t-tests.

RESULTS

The PC method detected more than 4 times as many outliers (0.28%) than SD (0.065%). Most HRV indices derived using different preprocessing methods exhibited significant systematic (P <.05) and substantial random variations.

CONCLUSIONS

The standard preprocessing methods for HRV data for outlier heartbeat detection and spectral transformation show low levels of agreement. This finding implies that, prior to designing algorithms for detection of sleepy drivers based on HRV analysis, the impact of different preprocessing methods and combinations thereof on driver sleepiness assessment needs to be studied.

摘要

目的

为了从心脏监测数据中高精度地推导心率变异性(HRV)指标,对检测和去除异常心跳进行适当的预处理以及进行频谱变换至关重要。本研究的目的是评估用于检测异常心跳和进行频谱变换的心脏监测数据标准预处理方法之间的一致性,这些方法与估计不同嗜睡阶段驾驶员的HRV指标相关。

方法

该研究分析了瑞典一条公共高速公路上76名驾驶员的3500多个5分钟驾驶时段。心电图(ECG)数据记录于3项旨在评估清醒和嗜睡驾驶员生理差异的研究中。使用Pan-Tompkins算法从ECG数据中检测心跳峰值。使用两种标准方法识别异常心跳:(1)百分比变化(PC),将异常值定义为心跳间期与前4个间期平均值的偏差>30%;(2)标准差(SD),将异常值定义为心跳间期与当前时段平均间期持续时间的偏差>4个标准差。使用三种标准方法进行频谱变换,这是在频域中推导HRV指标所必需的;这些方法是:(1)傅里叶变换;(2)自回归模型;(3)Lomb-Scargle周期图。通过使用Bland-Altman图和配对学生t检验对13个常见HRV指标的估计值之间的一致性进行评估,对预处理方法进行了定量比较。

结果

PC方法检测到的异常值(0.28%)是SD方法(0.065%)的4倍多。使用不同预处理方法得出的大多数HRV指标表现出显著的系统差异(P<.05)和较大的随机变化。

结论

用于异常心跳检测和频谱变换的HRV数据标准预处理方法显示出较低的一致性。这一发现意味着,在设计基于HRV分析检测嗜睡驾驶员的算法之前,需要研究不同预处理方法及其组合对驾驶员嗜睡评估的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验