Yue Weisheng, Wang Zhihong, Whittaker John, Schedin Fredrik, Wu Zhipeng, Han Jiaguang
National Graphene Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Nanotechnology. 2016 Feb 5;27(5):055303. doi: 10.1088/0957-4484/27/5/055303. Epub 2016 Jan 11.
We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.
我们展示了在中红外波长下工作的共振可控超材料的设计、制造和特性。这些超材料由背对背或面对面的U形分裂环谐振器(SRR)对组成。使用傅里叶变换红外光谱法测量超材料的透射光谱。结果表明,透射共振取决于每个SRR对中两个SRR之间的距离。对于背对背和面对面的SRR对,随着两个SRR之间距离的增加,透射光谱中的凹陷向更短波长移动。因此,光谱中共振凹陷的位置可以通过SRR的相对位置来控制。这种共振控制机制为在集成纳米光学中开发具有可调谐性的用于光学滤波器和生物/化学传感装置的超材料提供了一种有前景的方法。