Schmollngruber Michael, Braun Daniel, Oser Daniel, Steinhauser Othmar
Department of Computational Biological Chemistry, University of Vienna, Austria.
Phys Chem Chem Phys. 2016 Feb 7;18(5):3606-17. doi: 10.1039/c5cp07112g.
In this computational study we present molecular dynamics (MD) simulations of reverse micelles, i.e. nano-scale water pools encapsulated by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and dissolved in isooctane. Although consisting of highly polar components, such micro-emulsions exhibit surprisingly low dielectric permittivity, both static and frequency-dependent. This finding is well supported by experimental dielectric measurements. Furthermore, the computational dielectric spectra of reverse micelles with and without the polar protein ubiquitin are almost identical. A detailed component analysis of our simulated systems reveals the underlying mechanism of the observed dielectric depolarisation. While each component by itself would make a remarkable contribution to the static dielectric permittivity, mutual compensation leads to the observed marginal net result. This compensatory behavior is maintained for all but the highest frequencies. Dielectric model theory adapted to the peculiarities of reverse micelles provides an explanation: embedding a system in a cavity engulfed by a low dielectric medium automatically leads to depolarization. In this sense experiment, simulation and theory are in accordance.
在这项计算研究中,我们展示了反胶束的分子动力学(MD)模拟,即由双(2-乙基己基)磺基琥珀酸钠(AOT)包裹并溶解在异辛烷中的纳米级水池。尽管由高极性成分组成,但这种微乳液的静态和频率相关介电常数都出奇地低。这一发现得到了实验介电测量的有力支持。此外,含有和不含极性蛋白质泛素的反胶束的计算介电谱几乎相同。对我们模拟系统的详细成分分析揭示了观察到的介电去极化的潜在机制。虽然每个成分本身都会对静态介电常数做出显著贡献,但相互补偿导致了观察到的微小净结果。除了最高频率外,这种补偿行为在所有频率下都保持。适用于反胶束特性的介电模型理论提供了一种解释:将一个系统嵌入被低介电介质包围的腔中会自动导致去极化。从这个意义上说,实验、模拟和理论是一致的。