Vierros Sampsa, Sammalkorpi Maria
Department of Chemistry and Materials Science and Department of Biomaterials and Bioproducts, Aalto University, P. O. Box 16100, 00076 Aalto, Finland.
ACS Omega. 2019 Sep 13;4(13):15581-15592. doi: 10.1021/acsomega.9b01959. eCollection 2019 Sep 24.
Here, we develop and verify the performance of a hybrid molecular modeling approach that combines coarse-grained apolar solvent and atomistic solute or polar solvent description, for example, for description of reverse micellar systems. The coarse-grained solvent model is directly applicable to organic solvents encompassing alkane, alkene, and fatty acid ester functional groups and connects directly to both standard united-atom GROMOS 53A6 and all-atom CHARMM27 force fields, as well as the atomistic detail water models compatible with these force fields. The different levels of description are coupled via explicit, unscaled electrostatics, and scaled mixing rules for dispersive interactions. The hybrid model is in near-quantitative agreement with fully atomistic simulations when combined with the CHARMM27 model but underestimates modestly surfactant aggregation when using GROMOS 53A6 united-atom description. The use of truncated electrostatics affords up to a 9-fold increase in computational speed without significant loss of accuracy. However, long-range electrostatic calculations and load imbalance at high core counts can significantly degrade the performance. We demonstrate the usability of the hybrid model by assessing the reverse micelle formation of a homologous series of nonionic glycerolipids via large-scale self-assembly simulations. The presented model is demonstrated here for accurate description of surfactant systems in apolar solvents, with and without also polar solvent (water) in the system. The formulation can be expected to describe well also other solute species or interfaces with an apolar solvent in an apolar environment.
在此,我们开发并验证了一种混合分子建模方法的性能,该方法结合了粗粒度的非极性溶剂以及原子级溶质或极性溶剂描述,例如用于描述反胶束系统。粗粒度溶剂模型可直接应用于包含烷烃、烯烃和脂肪酸酯官能团的有机溶剂,并直接与标准联合原子GROMOS 53A6和全原子CHARMM27力场以及与这些力场兼容的原子级详细水模型相连接。不同层次的描述通过显式、未缩放的静电作用以及用于色散相互作用的缩放混合规则进行耦合。当与CHARMM27模型结合使用时,混合模型与全原子模拟结果几乎达到定量一致,但在使用GROMOS 53A6联合原子描述时,对表面活性剂聚集的估计略有不足。使用截断静电作用可使计算速度提高多达9倍,且不会显著损失精度。然而,长程静电计算以及高核心数时的负载不平衡会显著降低性能。我们通过大规模自组装模拟评估了一系列同系非离子甘油脂的反胶束形成,从而证明了混合模型的可用性。本文展示的模型能够准确描述非极性溶剂中的表面活性剂系统,无论系统中是否还存在极性溶剂(水)。预计该公式也能很好地描述在非极性环境中与非极性溶剂接触的其他溶质种类或界面。